K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2016

\(\frac{1}{n}-\frac{1}{n+1}\)

\(=\frac{n+1}{n.\left(n+1\right)}-\frac{n}{n.\left(n+1\right)}\)

\(=\frac{n+1-n}{n.\left(n+1\right)}\)

\(=\frac{1}{n.\left(n+1\right)}\)  Điều phải chứng minh 

25 tháng 12 2015

Ai tick cho mình 5 cái để tròn luôn kìa

21 tháng 7 2016

\(A=\frac{1}{5}+\frac{1}{13}+\frac{1}{25}+...+\frac{1}{2.n^2+2n+1}< \frac{1}{4}+\frac{1}{12}+\frac{1}{24}+...+\frac{1}{2.n^2+2n}\)

\(A< \frac{1}{2}.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{n.\left(n+1\right)}\right)\)

\(A< \frac{1}{2}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{n.\left(n+1\right)}\right)\)

\(A< \frac{1}{2}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{n}-\frac{1}{n+1}\right)\)

\(A< \frac{1}{2}.\left(1-\frac{1}{n+1}\right)< \frac{1}{2}\)

\(\Rightarrow A< \frac{1}{2}\)

29 tháng 8 2015

a, Điều đương nhiên

b,\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{999.1000}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.........+\frac{1}{999}-\frac{1}{1000}\)

\(1-\frac{1}{1000}\)

\(\frac{999}{1000}\)

18 tháng 8 2017

Ta có :

\(\sqrt{1+2+...+n-1+n+n-1+...+2+1}\)

=\(\sqrt{2\left(1+2+...+n-1\right)+n}\)

=\(\sqrt{\dfrac{2\left(n-1\right)n}{2}+n}=\sqrt{n^2}=n\)

Chúc Bạn Học Tốt ,Cô @Bùi Thị Vân kiểm tra giùm em với ạ

5 tháng 7 2018

Ta có: \(n^2+\left(n+1\right)^2>2n\left(n+1\right)\)

\(\Rightarrow\frac{1}{5}+\frac{1}{13}+...+\frac{1}{n^2+\left(n+1\right)^2}\)

\(=\frac{1}{1^2+2^2}+\frac{1}{2^2+3^2}+...+\frac{1}{n^2+\left(n+1\right)^2}< \frac{1}{2.1.2}+\frac{1}{2.2.3}+...+\frac{1}{2.n.\left(n+1\right)}\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{n.\left(n+1\right)}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{n+1}\right)< \frac{1}{2}\)