Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta thấy $B$ có 11 số hạng. Mỗi số hạng phía trước $\frac{1}{22}$ đều lớn hơn $\frac{1}{22}$
Do đó $B> 11.\frac{1}{22}=\frac{1}{2}$ (đpcm)
Lần sau bạn lưu ý gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
S = 1/11 + 1/12 + 1/13 + 1/14 + ... + 1/20
S > 1/20 + 1/20 + 1/20 + 1/20 + ... + 1/20
10 phân số 1/20
S > 10 × 1/20
S > 1/2
Ta có :S=1/11+1/12+1/13+...+1/20<1/10+1/10+1/10+...+1/10(20 số hạng 1/10)
=>S<1/10.20=1/2<5/6
ĐPCM
a) 2/9 - (1/20 + 2/9)
= 2/9 - 1/20 - 2/9
= (2/9 - 2/9) - 1/20
= 0 - 1/20
= -1/20
b) -3/14 + 2/13 + (-25/14) + (-15/13)
= (-3/14 - 25/14) + (2/13 - 15/13)
= -2 - 1
= -3
c) -3/11 + 11/8 - 3/8 + (-8/11)
= (-3/11 - 8/11) + (11/8 - 3/8)
= -1 + 1
= 0
d) 3/8 + (-1/4) - (7/12 - 1/6)
= 1/8 - 5/12
= -7/24
e) (1/3 + 12/67 + 13/41) - (79/67 - 28/41)
= 1/3 + 12/67 + 13/41 - 79/67 + 28/41
= 1/3 + (12/67 - 79/67) + (13/41 + 28/41)
= 1/3 - 1 + 1
= 1/3
Ta có : A=1/11+1/12+1/13+1/14+...+1/20
=>A>1/20+1/20+1/20+...+1/20(10 số hạng 1/20)
=>A>1/20.10=1/2
Vậy A>1/2
\(\frac{1}{8}=\frac{1}{8}\)
\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}<\frac{3}{10}\)
\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}<\frac{3}{40}\)
-> A <\(\frac{1}{8}+\frac{3}{10}+\frac{3}{40}=\frac{20}{40}=\frac{1}{2}\)
1/20-1/11 /1 + 1 =10 [ p/s ]
d/s: 10p/s