
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



\(B=4+4^2+.....+4^{100}\)
\(=\left(4+4^2\right)+\left(4^3+4^4\right)+....+\left(4^{99}+4^{100}\right)\)
Vì các nhóm trên đều có chữ số tận cùng là 0
\(\Rightarrow B⋮5\left(đpcm\right)\)
\(B=4+4^2+4^3+...+4^{99}+4^{100}\)
\(4B=4^2+4^3+4^4+...+4^{100}+4^{101}\)
\(3B=4^{101}-4\)
\(B=\frac{4^{101}-4}{3}\)


\(B=4+4^2+4^3+\cdot\cdot\cdot+4^{20}\)
\(B=4\cdot\left(1+4\right)+4^3\cdot\left(1+4\right)+\cdot\cdot\cdot+4^{19}\cdot\left(1+4\right)\)
\(B=4\cdot5+4^3\cdot5+\cdot\cdot\cdot+4^{19}\cdot5\)
\(B=5\cdot\left(4+4^3+\cdot\cdot\cdot+4^{19}\right)\)
Vì : \(4+4^3+\cdot\cdot\cdot+4^{19}\inℤ\)
\(\Rightarrow B⋮5\)
Ta có : B = 4 + 42 + 43 + 44 + ... + 417 + 418 + 419 + 420
= (4 + 42) + (43 + 44) + ... + (417 + 418) + (419 + 420)
= (4 + 42) + 42.(4 + 42) + .... + 416.(4 + 42) + 418 .(4 + 42)
= 20 + 42 . 20 + ... + 416.20 + 418 . 20
= 20.(1 + 42 + ... + 416 + 418)
= 4.5.(1 + 42 + ... + 416 + 418) \(⋮\)5
Vậy B \(⋮\)5 (ĐPCM)

B= 4^n.4^2+4^n.4+4^n.1
B=4^n.(42+4+1)
B=4^n.21
vì 21chia hết cho 21
suy ra 4^n.21 chia hết cho 21
suy ra B chia hết cho 21
=(1+4+4^2)+(4^3+4^4+4^5)+......+(4^2010+4^2011+4^2012)
=21+4^3.(1+4+4^2)+..........+4^2010.(1+4+4^2)
=21+4^3.21+...........+4^2010.21
=21.(1+4^3+....+4^2010) chia hết cho 21
Ta có \(1+4+4^2+4^3+....+4^{2012}\)
\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^6\right)+....+\left(4^{2010}+4^{2011}+4^{2012}\right)\)
\(=1.\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+....+4^{2010}.\left(1+4+4^2\right)\)
\(=\left(1+4+4^2\right).\left(1+4^3+....+4^{2010}\right)\)
\(=21.\left(1+4^3+...+4^{2010}\right)⋮21\)
Vậy biểu thức chia hết cho 21