Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(x^4\ge0\) ( lũy thừa bậc chẵn)
\(3x^2\ge0\) ( vì x2 là lũy thừa bậc chẵn nên lớn hơn 0 )
=> A(x) > 0
Vậy đa thức A(x) ko có nghiệm
Ta có : \(x^4>=0\);\(3x^2>=0\); \(1>0\)
=> \(x^4+3x^2+1>0\)
=> PTVN
Bài 1:
1. Thay x=-5;y=3 vào P ta được:
P=\(2.\left(-5\right)\left[\left(-5\right)+3-1\right]+\left(3\right)^2+1\)=40
2. P=2x(x+y-1)+y2+1
\(\Leftrightarrow P=2x^2+2xy-2x+y^2+1\)
\(\Leftrightarrow P=\left(x+y\right)^2+(x^2-2.\frac{1}{2}x+\frac{1}{4})+\frac{3}{4}\)
\(\Leftrightarrow P=\left(x+y\right)^2+(x-\frac{1}{2})^2+\frac{3}{4}\) >0 \(\forall x;y\:\)
Bạn tham khảo nha, không hiểu thì cứ hỏi mình nha
Bài 2:
1. f(x)=g(x)-h(x)=4x2+3x+1-(3x2-2x-3)
\(\Leftrightarrow f\left(x\right)=x^2+5x+4\)
2. Thay x=-4 vào f(x) ta được: f(4)=(-4)2+5(-4)+4=0
Vậy x=-4 là nghiệm của f(x)
3. \(\Leftrightarrow f\left(x\right)=x^2+5x+4\)
\(\Leftrightarrow f\left(x\right)=x\left(x+1\right)+4\left(1+x\right)\)
\(\Leftrightarrow f\left(x\right)=\left(x+4\right)\left(x+1\right)\)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-4\end{matrix}\right.\)
Vậy tập hợp nghiệm của f(x) là \(\left\{-4;-1\right\}\)
Bạn tham khảo nha, không hiểu cứ hỏi mình ha
a)P(x)=\(x^5-3x^2+7x^4-9x^3+x^2-\dfrac{1}{4}x\)
=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)
Q(x)=\(5x^4-x^5+x^2-2x^3+3x^2-\dfrac{1}{4}\)
=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)
b) P(x)=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)
+ Q(x)=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)
__________________________________
P(x)+Q(x)= \(12x^4-11x^3+2x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)
P(x)=\(x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)
- Q(x)=\(-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)
_________________________________________
P(x)-Q(x)=\(2x^5+2x^4-7x^3-6x^2-\dfrac{1}{4}x-\dfrac{1}{4}\)
c)Thay x=0 vào đa thức P(x), ta có:
P(x)=\(0^5+7\cdot0^4-9\cdot0^3-2\cdot0^2-\dfrac{1}{4}\cdot0\)
=0+0-0-0-0
=0
Vậy x=0 là nghiệm của đa thức P(x).
Thay x=0 vào đa thức Q(x), ta có:
Q(x)=\(-0^5+5\cdot0^4-2\cdot0^3+4\cdot0^2-\dfrac{1}{4}\)
=0+0-0+0-\(\dfrac{1}{4}\)
=0-\(\dfrac{1}{4}\)
=\(\dfrac{-1}{4}\)
Vậy x=0 không phải là nghiệm của đa thức Q(x).
a) Sắp xếp theo lũy thừa giảm dần
P(x)=x5−3x2+7x4−9x3+x2−14xP(x)=x5−3x2+7x4−9x3+x2−14x
=x5+7x4−9x3−2x2−14x=x5+7x4−9x3−2x2−14x
Q(x)=5x4−x5+x2−2x3+3x2−14Q(x)=5x4−x5+x2−2x3+3x2−14
=−x5+5x4−2x3+4x2−14=−x5+5x4−2x3+4x2−14
b) P(x) + Q(x) = (x5+7x4−9x3−2x2−1
a) Thu gọn và sắp xếp:
M(x) = 2x4 – x4 + 5x3 – x3 – 4x3 + 3x2 – x2 + 1
= x4 + 2x2 +1
b)M(1) = 14 + 2.12 + 1 = 4
M(–1) = (–1)4 + 2(–1)2 + 1 = 4
Ta có M(x)=\(x^4+2x^2+1\)
Vì \(x^4\)và \(2x^2\)luôn lớn hơn hoặc bằng 0 với mọi x
Nên \(x^4+2x^2+1>0\)
Tức là M(x)\(\ne0\) với mọi x
Vậy đa thức trên không có nghiệm.
a) Sắp xếp các hạng tử của đa thức M(x) theo lũy thừa giảm của biến
M(x)=2x4−x4+5x3−x3−4x3+3x2−x2+1M(x)=2x4−x4+5x3−x3−4x3+3x2−x2+1
=x4+2x2+1=x4+2x2+1
b) M(1)=14+2.12+1=4M(1)=14+2.12+1=4
M(−1)=(−1)4+2.(−1)2+1=4M(−1)=(−1)4+2.(−1)2+1=4
c) Ta có: M(x)=x4+2x2+1M(x)=x4+2x2+1
Vì giá trị của x4 và 2x2 luôn lớn hơn hay bằng 0 với mọi x nên x4 +2x2 +1 > 0 với mọi x tức là M(x) ≠ 0 với mọi x. Vậy M(x) không có nghiệm.
Bài 1:
ta có M(x)=a.x2+5.x-3 và x=\(\frac{1}{2}\)
Cho M=0
\(\Rightarrow\)a.1/22+5.1/2-3=0
a.1/4+5/2-3=0
a.1/4-1/2=0
a.1/4=1/2
a=1/2:1/4
a=2
Bài 2
Q(x)=x4+3.x2+1
=x2.x2+1,5.x2+1,5.x2+1,5.1,5-1,25
=x2.(x2+1,5)+1,5.(x2+1,5)-1,25
=(x2+1,5)(x2+1,5)-1,25
\(\Rightarrow\)(x2+1,5)2 \(\ge\)0 với \(\forall\)x
\(\Rightarrow\)(x2+1,5)2-1,25\(\ge\)1,25 > 0
Vậy đa thức Q ko có nghiệm
Ta có:
x4x4 và 3x23x2≥0≥0 (do có số mũ chẵn )
Nếu Q(x)=x4+3x2+1=0x4+3x2+1=0
⇒x4+3x2=−1⇒x4+3x2=−1
Mà x4;3x2≥0x4;3x2≥0
⇒q(x)=x4+3x2+1⇒q(x)=x4+3x2+1 không có nghiệm
⇒dpcm
Q(x) = x4 + 3x2 + 1
Ta có : x4 ≥ 0 ∀ x ; 3x2 ≥ 0 ∀ x
=> x4 + 3x2 + 1 ≥ 1 > 0 ∀ x
hay Q(x) không có nghiệm (đpcm)