Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 3 :
1. Thay x = -5 vào f(x) ta được :
\(\left(-5\right)^2-4\left(-5\right)+5=50\)
Vậy x = -5 không là nghiệm của đa thức trên .
Bài 2 :
1. Ta có : \(f_{\left(x\right)}=x\left(1-x\right)+\left(2x^2-x+4\right)\)
=> \(f_{\left(x\right)}=x-x^2+2x^2-x+4\)
=> \(f_{\left(x\right)}=x^2+4\)
=> \(x^2+4=0\)
Vậy đa thức trên vô nghiệm .
2. Ta có \(g_{\left(x\right)}=x\left(x-5\right)-x\left(x+2\right)+7x\)
=> \(g_{\left(x\right)}=x^2-5x-x^2-2x+7x\)
=> \(g_{\left(x\right)}=0\)
Vậy đa thức trên vô số nghiệm .
3. Ta có : \(h_{\left(x\right)}=x\left(x-1\right)+1\)
=> \(h_{\left(x\right)}=x^2-x+1\)
=> \(h_{\left(x\right)}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
=> \(\left(x-\frac{1}{2}\right)^2=-\frac{3}{4}\)
Vậy đa thức vô nghiệm .
Bài 3:
\(f\left(x\right)=x^2+4x-5.\)
+ Thay \(x=-5\) vào đa thức \(f\left(x\right)\) ta được:
\(f\left(x\right)=\left(-5\right)^2+4.\left(-5\right)-5\)
\(\Rightarrow f\left(x\right)=25+\left(-20\right)-5\)
\(\Rightarrow f\left(x\right)=25-20-5\)
\(\Rightarrow f\left(x\right)=5-5\)
\(\Rightarrow f\left(x\right)=0.\)
Vậy \(x=-5\) là nghiệm của đa thức \(f\left(x\right).\)
Chúc bạn học tốt!
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
1. Thay x=-5;y=3 vào P ta được:
P=\(2.\left(-5\right)\left[\left(-5\right)+3-1\right]+\left(3\right)^2+1\)=40
2. P=2x(x+y-1)+y2+1
\(\Leftrightarrow P=2x^2+2xy-2x+y^2+1\)
\(\Leftrightarrow P=\left(x+y\right)^2+(x^2-2.\frac{1}{2}x+\frac{1}{4})+\frac{3}{4}\)
\(\Leftrightarrow P=\left(x+y\right)^2+(x-\frac{1}{2})^2+\frac{3}{4}\) >0 \(\forall x;y\:\)
Bạn tham khảo nha, không hiểu thì cứ hỏi mình nha
Bài 2:
1. f(x)=g(x)-h(x)=4x2+3x+1-(3x2-2x-3)
\(\Leftrightarrow f\left(x\right)=x^2+5x+4\)
2. Thay x=-4 vào f(x) ta được: f(4)=(-4)2+5(-4)+4=0
Vậy x=-4 là nghiệm của f(x)
3. \(\Leftrightarrow f\left(x\right)=x^2+5x+4\)
\(\Leftrightarrow f\left(x\right)=x\left(x+1\right)+4\left(1+x\right)\)
\(\Leftrightarrow f\left(x\right)=\left(x+4\right)\left(x+1\right)\)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-4\end{matrix}\right.\)
Vậy tập hợp nghiệm của f(x) là \(\left\{-4;-1\right\}\)
Bạn tham khảo nha, không hiểu cứ hỏi mình ha
![](https://rs.olm.vn/images/avt/0.png?1311)
Thay f(17) và f(12) vào đa thức f(x)=ax+b ta có:
\(\hept{\begin{cases}12a+b=35\\17a+b=71\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=35-12a\\17a+35-12a=71\end{cases}}\)
\(\Leftrightarrow5a=36\)
\(\Leftrightarrow a=\frac{36}{5}\)
Theo đề bài \(a,b\in Z\)
Nên không thể đồng thời có f(17)=71 và f(12)=35
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài làm:
Vì a,b,c khác 0 nên:
Ta có: \(a\left(y+z\right)=b\left(z+x\right)=c\left(x+y\right)\)
\(\Leftrightarrow\frac{y+z}{bc}=\frac{z+x}{ca}=\frac{x+y}{ab}\) (1) (chia cả 3 vế cho abc)
Áp dụng t/c dãy tỉ số bằng nhau ta được:
\(\left(1\right)=\frac{x+y-z-x}{ab-ca}=\frac{y+z-x-y}{bc-ab}=\frac{z+x-y-z}{ca-bc}\)
\(=\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}\)
=> đpcm
Bài làm:
Vì a,b,c khác 0 nên:
Ta có: a(y+z)=b(z+x)=c(x+y)�(�+�)=�(�+�)=�(�+�)
⇔y+zbc=z+xca=x+yab⇔�+���=�+���=�+��� (1) (chia cả 3 vế cho abc)
Áp dụng t/c dãy tỉ số bằng nhau ta được:
(1)=x+y−z−xab−ca=y+z−x−ybc−ab=z+x−y−zca−bc(1)=�+�−�−���−��=�+�−�−���−��=�+�−�−���−��
=y−za(b−c)=z−xb(c−a)=x−yc(a−b)=�−��(�−�)=�−��(�−�)=�−��(�−�)
=> đpcm
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Ta có: \(x^4+x^2=0\)
\(\Rightarrow x^2\left(x^2+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2=0\\x^2+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x^2=-1\left(loại\right)\end{matrix}\right.\)
Vậy x = 0 là nghiệm của đa thức \(f\left(x\right)=x^4+x^2\)
b, Ta có: \(x^3-x=0\)
\(\Rightarrow x^2\left(x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Vậy x = 0, x = 1 là nghiệm của đa thức \(f\left(x\right)=x^3-x\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1. a) Ta có: M = |x + 15/19| \(\ge\)0 \(\forall\)x
Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19
Vậy MinM = 0 <=> x = -15/19
b) Ta có: N = |x - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x
Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7
Vậy MinN = -1/2 <=> x = 4/7
2a) Ta có: P = -|5/3 - x| \(\le\)0 \(\forall\)x
Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3
Vậy MaxP = 0 <=> x = 5/3
b) Ta có: Q = 9 - |x - 1/10| \(\le\)9 \(\forall\)x
Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10
Vậy MaxQ = 9 <=> x = 1/10
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(f\left(3\right)=4\times3^2-5=31\)
\(f\left(-\frac{1}{2}\right)=4\times\left(-\frac{1}{2}\right)^2-5=-4\)
b) để f(x)=-1
<=>\(4x^2-5=-1\)
<=>\(4x^2=4\)
<=>\(x^2=1\)
<=>\(x=\orbr{\begin{cases}1\\-1\end{cases}}\)
Cho hàm số y = f(x) = 4x^2 +4y=f(x)=4x2+4. Tính f(-2)f(−2) ; f(2)f(2) ; f(4)f(4).
Đáp số:
f(-2) =f(−2)=
f(2) =f(2)=
f(4) =f(4)=
![](https://rs.olm.vn/images/avt/0.png?1311)
mình làm lại câu b) nha
b) |x-3|=-4
th1: x-3=-4
x=3+(-4)
x=-1
th2: x-3=4
x=3+4
x=7
b) \(\left|x-3\right|=-4\)
t/h1:\(x-3=-4\)
\(x=3-\left(-4\right)\)
\(x=7\)
t/h2:\(x-3=4\)
\(x=3-4\)
\(x=-1\)