Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{2+\sqrt{3}}{2+\sqrt{4+2\sqrt{3}}}+\frac{2-\sqrt{3}}{2-\sqrt{4-2\sqrt{3}}}\)
\(=\frac{2+\sqrt{3}}{2+\sqrt{\left(\sqrt{3}+1\right)^2}}+\frac{2-\sqrt{3}}{2-\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\frac{2+\sqrt{3}}{2+\sqrt{3}+1}+\frac{2-\sqrt{3}}{2-\sqrt{3}+1}\)
\(=\frac{2+\sqrt{3}}{3+\sqrt{3}}+\frac{2-\sqrt{3}}{3-\sqrt{3}}\)
\(=\frac{\left(2+\sqrt{3}\right)\left(3-\sqrt{3}\right)+\left(2-\sqrt{3}\right)\left(3+\sqrt{3}\right)}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}\)
\(=\frac{6+\sqrt{3}-3+6-\sqrt{3}-3}{9-3}=\frac{6}{6}=1\)
b, \(\frac{1}{x+\sqrt{x}}+\frac{2\sqrt{x}}{x-1}-\frac{1}{x-\sqrt{x}}\)
\(=\frac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}+\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x-1}\right)}-\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{\sqrt{x}-1+2x-\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{2\left(x-1\right)}{\sqrt{x}\left(x-1\right)}=\frac{2}{\sqrt{x}}\)
ĐKXĐ: ...
\(Q=\frac{\sqrt{x}+\sqrt{x-1}}{\left(\sqrt{x}-\sqrt{x-1}\right)\left(\sqrt{x}+\sqrt{x-1}\right)}-\frac{\left(x-3\right)\left(\sqrt{x-1}+\sqrt{2}\right)}{\left(\sqrt{x-1}-\sqrt{2}\right)\left(\sqrt{x-1}+\sqrt{2}\right)}\)
\(=\frac{\sqrt{x}+\sqrt{x-1}}{x-\left(x-1\right)}-\frac{\left(x-3\right)\left(\sqrt{x-1}+\sqrt{2}\right)}{x-1-2}\)
\(=\sqrt{x}+\sqrt{x-1}-\sqrt{x-1}-\sqrt{2}\)
\(=\sqrt{x}-\sqrt{2}\)
\(\Rightarrow Q+\sqrt{2}=\sqrt{x}\)
Mới đc câu a ak, thog cảm nha, trih độ mih thấp lắm:
\(\frac{\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\frac{\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\frac{2b}{a-b}\)
=\(\frac{a+\sqrt{ab}-\sqrt{ab}+b}{a-b}-\frac{2b}{a-b}\)
=\(\frac{a+b-2b}{a-b}=\frac{a-b}{a-b}=1\)
1. Với x khác 0; 1 ta có:
\(P=\frac{\sqrt{x}}{\sqrt{x}+2}+\frac{-x+x\sqrt{x}+6}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(P=\frac{\sqrt{x}.\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}+\frac{-x+x\sqrt{x}+6}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(P=\frac{x-\sqrt{x}-x+x\sqrt{x}+6-x-3\sqrt{x}-2}{\left(\sqrt{x+2}\right)\left(\sqrt{x}-1\right)}\)
\(P=\frac{x\sqrt{x}-x-4\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(P=\sqrt{x}-2\)
sửa đề : \(\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{2\sqrt{x}+1}{x+\sqrt{x}}=\frac{\sqrt{x}+2}{\sqrt{x}+1}\)đk : x > 0
\(VT=\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{x-1+2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+2}{\sqrt{x}+1}=VP\)
Vậy ta có đpcm