\(\frac{n}{n+1}\)là Phân số tối giản\(\left(n\in N...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2016

Gọi d là ƯC(n;n+1) 

Khi đó: n chia hết co d n+1 chia hết cho d

=> (n+1)-n chia hết cho d 

=> 1 chia hết cho d

=> d=1 

Vậy n/n+1 là phân số tối giản

6 tháng 6 2017

Gọi d là ƯCLN của (n;n+1)

\(\Rightarrow\)n chia hết cho d; (n+1) chia hết cho d

\(\Rightarrow\)(n+1) - n chia hết cho d

\(\Rightarrow\)1 chia hết cho d

\(\Rightarrow d\in\){1;-1}

Vậy \(\frac{n}{n+1}\)là phân số tối giản

6 tháng 6 2017

gọi d là ƯCLN{n;n+1}

ta có: n chia hết ; n+1 chia hết cho d (1)

=> n+1-n chia hết cho d

=> 1 chia hết cho d (2)

từ (1) và(2)=> d= +1 và -1

vậy \(\frac{n}{n+1}\)là phân số tối giản

16 tháng 2 2019

Ta cần c/m: \(\left(n;n+1\right)=1\)

Thật vậy,đặt \(\left(n;n+1\right)=d\).Ta có:

\(\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\Rightarrow n+1-n⋮d\Leftrightarrow1⋮d\)

Suy ra \(d=1\).Vậy \(\frac{n}{n+1}\) là phân số tối giản với mọi n thuộc Z,n khác 0. (đpcm)

16 tháng 2 2019

Gọi d là ƯCLN\((n,n+1)\)

\(\Rightarrow\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)

\(\Rightarrow(n+1)-n⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=\pm1\)

Vậy : ......

29 tháng 5 2017

Ta có: \(\frac{5n+2}{\left(3n+1\right)\left(2n+1\right)}=\frac{5n+2}{6n^2+5n+1}\)

Giả sử d là ước chung lớn nhất của \(\left(5n+2\right);\left(6n^2+5n+1\right)\)

\(\Rightarrow\hept{\begin{cases}6.\left(5n+2\right)^2⋮d\\25.\left(6n^2+5n+1\right)⋮d\end{cases}}\)

\(\Rightarrow25\left(6n^2+5n+1\right)-6\left(5n+2\right)^2⋮d\)

\(\Rightarrow5n+1⋮d\)

\(\Rightarrow\left(5n+2\right)-\left(5n+1\right)=1⋮d\)

\(\Rightarrow d=1\)

Vậy \(\frac{5n+2}{\left(3n+1\right)\left(2n+1\right)}\)là phân số tối giản

9 tháng 6 2017

Gọi d = (5n + 3 ; 3n + 2) (d thuộc N) 
=> (5n + 3) chia hết cho d và (3n + 2) chia hết cho d 
=> 5.(3n + 2) - 3.(5n + 3) chia hết cho d 
=> 1 chia hết cho d 
=> d = 1 (vì d thuộc N) 
=> ƯCLN(5n + 3 ; 3n + 2) = 1 
=> Phân số 5n+3/3n+2 tối giản với mọi n thuộc N

3 tháng 2 2017

Gọi d là ƯCLN(12n + 1; 30n + 2) Nên ta có :

12n + 1 ⋮ d và 30n + 2 ⋮ d

=> 5(12n + 1) ⋮ d và 2(30n + 2) ⋮ d

=> 60n + 5 ⋮ d và 60n + 4 ⋮ d

=> (60n + 5) - (60n + 4) ⋮ d

=> 1 ⋮ d => d = 1

Vì ƯCLN(12n + 1; 30n + 2) = 1 nên (12n + 1)/(30n + 2) tối giản ( đpcm )

21 tháng 2 2019

Gọi UCLN(n,n+1)=d

=> n và n+1 chia hết cho d

=>(n+1)-n chia hết cho d

=> 1 chia hết cho d

=>d=1 hoặc -1

=> (n,n+1)=1(hay nguyên tố cùng nhau)

=> n/(n+1) luôn tối giản vs mọi n thuộc N, n khác 0 và khác -1(để mẫu khác 0 thì phân thức đc xác định);

Vậy....mọi n với...

21 tháng 2 2019

Always

6 tháng 4 2017

Gọi l là ƯCLN(n+1;n-2)

Vì d thuộc ƯCLN(n+1;n-2)

=>n+1 :d

                       }=>(n+1)+(n-2):d

    n-2 :d            hay 1:d

=>d thuộc Ư(1)={-1,1}

Vậy n+1/n+2 là phân số tối giản

25 tháng 1 2018

Vì n và n + 1 là hai số tự nhiên liên tiếp nên Ư ( n, n + 1 ) = 1

=> \(\frac{n}{n+1}\) là phân số tối giản

Mk nói thế cho nhanh thôi chứ đg còn cách khác nữa

25 tháng 1 2018

Ư => UCLN nha bạn, mk nhầm