Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(-\frac{3}{4}\right)^{3x-1}=\frac{-27}{64}\)
\(\Leftrightarrow\left(-\frac{3}{4}\right)^{3x-1}=\left(-\frac{3}{4}\right)^3\)
\(\Leftrightarrow3x-1=3\)
\(\Leftrightarrow3x=4\)
\(\Leftrightarrow x=\frac{4}{3}\)
b) Đề sai ! Sửa :
\(\left(\frac{4}{5}\right)^{2x+5}=\frac{256}{625}\)
\(\Leftrightarrow\left(\frac{4}{5}\right)^{2x+5}=\left(\frac{4}{5}\right)^4\)
\(\Leftrightarrow2x+5=4\)
\(\Leftrightarrow2x=-1\)
\(\Leftrightarrow x=-\frac{1}{2}\)
c) \(\frac{\left(x+3\right)^5}{\left(x+5\right)^2}=\frac{64}{27}\)
\(\Leftrightarrow\left(x+3\right)^3=\left(\frac{4}{3}\right)^3\)
\(\Leftrightarrow x+3=\frac{4}{3}\)
\(\Leftrightarrow x=-\frac{5}{3}\)
d) \(\left(x-\frac{2}{15}\right)^3=\frac{8}{125}\)
\(\Leftrightarrow\left(x-\frac{2}{15}\right)^3=\left(\frac{2}{15}\right)^3\)
\(\Leftrightarrow x-\frac{2}{15}=\frac{2}{15}\)
\(\Leftrightarrow x=\frac{4}{15}\)
\(\dfrac{\left(2^8-2^6\right)^3}{64^4}=\dfrac{27}{64}\)
\(\dfrac{192^3}{64^4}=\dfrac{27}{64}\)
\(\dfrac{\left(3\times64\right)^3}{64^3\times64}=\dfrac{27}{64}\)
\(\dfrac{3^3\times64^3}{64\times64^3}=\dfrac{27}{64}\)
\(\dfrac{3^3}{64}=\dfrac{27}{64}\)
\(\dfrac{27}{64}=\dfrac{27}{64}\)
a)
\((3x-7)^5=0\Rightarrow 3x-7=0\Rightarrow x=\frac{7}{3}\)
b)
\(\frac{1}{4}-(2x-1)^2=0\)
\(\Leftrightarrow (2x-1)^2=\frac{1}{4}=(\frac{1}{2})^2=(-\frac{1}{2})^2\)
\(\Rightarrow \left[\begin{matrix} 2x-1=\frac{1}{2}\\ 2x-1=\frac{-1}{2}\end{matrix}\right.\Rightarrow \Rightarrow \left[\begin{matrix} x=\frac{3}{4}\\ x=\frac{1}{4}\end{matrix}\right.\)
c)
\(\frac{1}{16}-(5-x)^3=\frac{31}{64}\)
\(\Leftrightarrow (5-x)^3=\frac{1}{16}-\frac{31}{64}=\frac{-27}{64}=(\frac{-3}{4})^3\)
\(\Leftrightarrow 5-x=\frac{-3}{4}\)
\(\Leftrightarrow x=\frac{23}{4}\)
d)
\(2x=(3,8)^3:(-3,8)^2=(3,8)^3:(3,8)^2=3,8\)
\(\Rightarrow x=3,8:2=1,9\)
e)
\((\frac{27}{64})^9.x=(\frac{-3}{4})^{32}\)
\(\Leftrightarrow [(\frac{3}{4})^3]^9.x=(\frac{3}{4})^{32}\)
\(\Leftrightarrow (\frac{3}{4})^{27}.x=(\frac{3}{4})^{32}\)
\(\Leftrightarrow x=(\frac{3}{4})^{32}:(\frac{3}{4})^{27}=(\frac{3}{4})^5\)
f)
\(5^{(x+5)(x^2-4)}=1\)
\(\Leftrightarrow (x+5)(x^2-4)=0\)
\(\Leftrightarrow \left[\begin{matrix} x+5=0\\ x^2-4=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x+5=0\\ x^2=4=2^2=(-2)^2\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x=-5\\ x=\pm 2\end{matrix}\right.\)
g)
\((x-2,5)^2=\frac{4}{9}=(\frac{2}{3})^2=(\frac{-2}{3})^2\)
\(\Rightarrow \left[\begin{matrix} x-2,5=\frac{2}{3}\\ x-2,5=\frac{-2}{3}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{19}{6}\\ x=\frac{11}{6}\end{matrix}\right.\)
h)
\((2x+\frac{1}{3})^3=\frac{8}{27}=(\frac{2}{3})^3\)
\(\Rightarrow 2x+\frac{1}{3}=\frac{2}{3}\Rightarrow x=\frac{1}{6}\)
Ta có : 3x + 3x + 2 = 810
=> 3x(1 + 32) = 810
=> 3x.10 = 810
=> 3x = 81
=> 3x = 34
=> x = 4
ta có \(3^3+3^x+2=810\)
=>\(3^x\left(1+3^2\right)=810\)
=>\(3^x.10=810\)
=>\(3^x=81\)
=>\(3^x=3^4\)
=>x=4
Vậy x=4
Bài 2:
a) \(\frac{8^{14}}{4^{12}}\)
\(=\frac{\left(2^3\right)^{14}}{\left(2^2\right)^{12}}\)
\(=\frac{2^{42}}{2^{24}}\)
\(=2^{18}\)
\(=262144.\)
b) \(\left(-\frac{1}{3}\right)^7.3^7\)
\(=\left[\left(-\frac{1}{3}\right).3\right]^7\)
\(=\left(-1\right)^7\)
\(=-1.\)
c) \(\frac{90^2}{15^2}\)
\(=\left(\frac{90}{15}\right)^2\)
\(=6^2\)
\(=36.\)
d) \(\frac{790^4}{79^4}\)
\(=\left(\frac{790}{79}\right)^4\)
\(=10^4\)
\(=10000.\)
Chúc bạn học tốt!
Mk làm tiếp cho bạn Vũ Minh Tuấn nhé!
Bài 1:
\(-\frac{64}{343}=x^3\)
\(\Rightarrow x^3=\left(-\frac{4}{7}\right)^3\)
\(\Rightarrow x=-\frac{4}{7}\)
Vậy \(x=-\frac{4}{7}\)
\(\left(x+20\right)^{100}+\left|y+4\right|=0\)
Ta có: \(\left(x+20\right)^{100}\ge0;\left|y+4\right|\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x+20\right)^{100}=0\\\left|y+4\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-20\\y=-4\end{matrix}\right.\)
Vậy \(x=-20;y=-4\)
\(\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^3=\left(\frac{1}{3}\right)^3\)
\(\Rightarrow x-\frac{1}{2}=\frac{1}{3}\)
\(\Rightarrow x=\frac{5}{6}\)
Vậy \(x=\frac{5}{6}\)
\(\left(x+\frac{1}{2}\right)^2=\frac{4}{25}\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2=\left(\frac{2}{5}\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{2}=\frac{2}{5}\\x+\frac{1}{2}=-\frac{2}{5}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\frac{1}{10}\\x=-\frac{9}{10}\end{matrix}\right.\)
Vậy \(x\in\left\{-\frac{1}{10};-\frac{9}{10}\right\}\)
e) \(5^{x+2}=625\\ \Leftrightarrow5^{x+2}=5^4\\ \Leftrightarrow x+2=4\\ \Leftrightarrow x=2\)
Vậy...
g) \(\left(2x-1\right)^3=-8\\ \Leftrightarrow\left(2x-1\right)^3=\left(-2\right)^3\\ \Leftrightarrow2x-1=-2\\ \Leftrightarrow x=-\frac{1}{2}\)
VẬy...
\(a,\left(x+1\right)^2=81\)
\(\left(x+1\right)^2=9^2\) Hoặc \(\left(x+1\right)^2=\left(-9\right)^2\)
\(\left(x+1\right)=9\) \(x+1=-9\)
\(x=8\) \(x=-10\)
b,\(\left(x+5\right)^{^{ }3}=-64\)
\(\left(x+5\right)^3=\left(-4\right)^3\)
\(x+5=-4\)
=> \(x=-9\)
c,\(\left(2x-3\right)^2=9\)
=>\(\left(2x-3\right)^2=3^2\)Hoặc \(\left(2x-3\right)^2=\left(-3\right)^2\)
\(2x-3=3\) \(2x-3=-3\)
\(2x=6\) \(2x=0\)
=> \(\hept{\begin{cases}x=3\\x=0\end{cases}}\)
d, \(\left(4x+1\right)^3=27\)
\(\left(4x+1\right)^{^{ }3}=3^3\)
\(4x+1=3\)
\(4x=2\)
\(x=\frac{1}{2}\)
\(D=\frac{8^{10}+4^{10}}{8^4+4^{11}}=\frac{8^6}{4}=\frac{\left(2^3\right)^6}{2^2}=\frac{2^{18}}{2^2}=2^{16}\)
\(D=\frac{8^{10}+4^{10}}{8^4+4^{11}}=\frac{4^{15}+4^{10}}{4^6+4^{11}}=\frac{4^{10}.4^5+4^{10}}{4^6+4^6.4^5}=\frac{4^{10}.\left(4^5+1\right)}{4^6.\left(4^5+1\right)}=\frac{4^{10}}{4^6}=4^4=256\)
phần D trên mk làm sai xin lỗi nha
ko ghi đề
\(\left(x+\frac{1}{2}\right)^3=\frac{3^3}{4^3}\)
\(x+\frac{1}{2}=\frac{3}{4}\)
\(x=\frac{3}{4}-\frac{1}{2}\)
\(x=\frac{1}{4}\)
\(\left(x+\frac{1}{2}\right)^3=\frac{27}{64}\)
\(\left(x+\frac{1}{2}\right)^3=\left(\frac{3}{4}\right)^3\)
\(x=\left(\frac{3}{4}-\frac{1}{2}\right)^3\)
\(x=\frac{1}{4}^3\)