K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2019

Pương trình E=mc2 giải thích tại sao Uranium lại có thể liên tiếp, trong hàng triệu năm, bắn ra những tia li ti chạy với tốc độ khủng khiếp, tại sao mặt trời và các ngôi sao có thể tuôn ánh sáng và sức nóng trong hàng tỷ tỷ năm. Nó còn cho chúng ta thấy năng lượng ghê gớm chứa trong nhân nguyên tử và tiên đoán chỉ cần một lượng rất nhỏ Uranium cũng đủ tạo ra một trái bom có sức công phá hủy diệt cả một thành phố.

7 tháng 9 2020

\(sin^2x=\frac{1}{2}\) 

\(\frac{1-cos2x}{2}=\frac{1}{2}\) 

\(1-cos2x=1\) 

\(cos2x=0\)   

\(2x=\frac{\pi}{2}+k\pi\) 

\(x=\frac{\pi}{4}+\frac{k\pi}{2}\)

7 tháng 9 2020

tìm các nghiệm của x=\(\frac{\pi}{4}+\frac{\pi n}{2}\)bằng cách giải x

x=\(\frac{\pi}{4}+\frac{\pi n}{2}\), cho mọi số nguyên n

29 tháng 12 2016

ta có với n=1: VT=1=VP

giả sử đúng với n=k, k thuộc N*

ta cần chứng minh đúng với n=k+1

thay vào ta dduocj: [k(k+1)]2/4+(k+1)3=[(k+1)(k+2)]^2/4

=> đpcm

phương pháp quy nạp

18 tháng 8 2018

ta có : \(P\left(x\right)=\sum\limits^{20}_{k=1}\left(2x+1\right)^k=\sum\limits^{20}_{k=1}C_k^p\left(2x\right)^{k-p}\left(1\right)^k\)

để có : \(x^5\Rightarrow k-p=5\)

\(\Rightarrow\) hệ số của \(P\left(x\right)\) trong khai triển là : \(\sum\limits^{20}_{k=1}C^p_k\left(2\right)^{k-p}=C^0_52^5+C^1_62^5+C^2_72^5+...+C^{15}_{20}2^5\)

\(=32\left(C^0_5+C^1_6+C^2_7+...+C^{15}_{20}\right)=32.54264=1736448\)

vậy hệ số của \(x^5\) trong khai triển đa thức \(P\left(x\right)\)\(1736448\)

NV
4 tháng 10 2020

- Với \(n=3\Rightarrow2^3>2.3+1\) (đúng)

Giả sử BĐT cũng đúng với \(n=k\ge3\) nghĩa là \(2^k>2k+1\)

Ta cần chứng minh nó cũng đúng với \(n=k+1\)

Hay \(2^{k+1}>2\left(k+1\right)+1\Leftrightarrow2^{k+1}>2k+3\)

Thật vậy, ta có:

\(2^{k+1}=2.2^k>2.\left(2k+1\right)=4k+2\)

\(\Leftrightarrow2^{k+1}>2k+3+\left(2k-1\right)>2k+3\) ; \(\forall k\ge3\) (đpcm)

AH
Akai Haruma
Giáo viên
29 tháng 4 2019

Lời giải:

\(y=\sqrt{1-x^2}\Rightarrow y'=\frac{-2x}{2\sqrt{1-x^2}}=\frac{-x}{\sqrt{1-x^2}}=\frac{-x}{y}\)

\(\Rightarrow y''=\frac{(-x)'.y-(-x).y'}{y^2}=\frac{-y+xy'}{y^2}\)

Do đó:

\(y^2.y''-xy'+y=y^2.\frac{-y+xy'}{y^2}-xy'+y=(-y+xy')-xy'+y=0\)

Ta có đpcm.

NV
20 tháng 4 2019

\(y'=sinx+xcosx\)

\(y''=cosx+cosx-xsinx=2cosx-xsinx\)

\(y'''=-2sinx-sinx-xcosx=-3sinx-xcosx\)

\(y^{\left(4\right)}=-3cosx-cosx+xsinx=-4cosx+xsinx\)

\(y^{\left(5\right)}=4sinx+sinx+xcosx=5sinx+xcosx\)

a/

\(y'''+y'+2sinx=-3sinx-xcosx+sinx+xcosx+2sinx=0\)

b/ \(y''+y=2\Leftrightarrow2cosx-xsinx+xsinx=2\)

\(\Leftrightarrow cosx=1\Rightarrow x=k2\pi\)

c/ \(y^{\left(5\right)}\left(\frac{\pi}{2}\right)=5sin\frac{\pi}{2}+\frac{\pi}{2}.cos\frac{\pi}{2}=5\)

23 tháng 1 2018

\(\sin^4x+\cos^4x=\dfrac{\cos4x+3}{4}\)

\(\Leftrightarrow\left(\sin^2x+\cos^2x\right)^2-2\sin^2x.\cos^2x=\dfrac{\cos4x+3}{4}\)

\(\Leftrightarrow\dfrac{1-\cos4x}{4}=2\sin^2x.\cos^2x\)

\(\Leftrightarrow\dfrac{1-\cos4x}{2}=\left(2\sin x.\cos x\right)^2\)

\(\Leftrightarrow2\sin^22x=\sin^22x\)

\(\Leftrightarrow\left[{}\begin{matrix}\sin2x=0\\\sin2x=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\kappa\pi}{2}\\x=\dfrac{\pi}{12}+\kappa\pi\left(\kappa\in Z\right)\\x=\dfrac{5\pi}{12}+\kappa\pi\end{matrix}\right.\)

26 tháng 1 2018

còn cách giải nào không bạn