K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2023

\(D=3+2^2...............2^{2008}\)

\(B=\left(2^2+2^3+2^4\right)+\left(2^5+2^6+2^7\right)+...+\left(2^{2006}+2^{2007}+2^{2008}\right)=\)

\(=2^2\left(1+2+2^2\right)+2^5\left(1+2+2^2\right)+2^{2006}\left(1+2+2^2\right)=\)

\(=7\left(2^2+2^5+2^8+...+2^{2003}+2^{2006}\right)⋮7\)

\(D=3+B\) mà \(B⋮7\) => D chia 7 dư 3

13 tháng 12 2015

7+ 7+ 72 + 73 + ... + 72008 + 72009

= (1 + 7) + (1 + 7) . 73 + ... + (1 + 7) . 72009

=8 + 8 . 73 + ... + 8 . 72009

= 8 . (1 + 73 + ... + 72009)

Vậy tổng trên chia hết cho 8

13 tháng 10 2016

Ta có : ( 70 + 71 + 72 + 73 + ..... + 72008 + 72009 

(=)  ( 1 + 7 + 72 + 7 + ...... + 72008 + 72009 

(=) 1 . ( 1 + 7 ) + 72 . ( 1 + 7 ) + ....... + 72008 . ( 1 + 7 )

(=) ( 1 + 7 ) . ( 1 + 72 + ..... + 72008 )

(=) 8 . ( 1 + 72 + ..... + 72008 ) chia hết cho 8 ( vì 8 chia hết cho 8 )

17 tháng 11 2021

con khong biet

26 tháng 12 2022

Sai hết :)

15 tháng 7 2019

\(ab+ba=(10a+b)+(10b+a)\)

\(=10a+b+10b+a\)

\(=11a+11b\)

\(=11\left(a+b\right)\)

\(a+b\inℕ\Rightarrow ab+ba⋮11\)

15 tháng 7 2019

\(A=2+2^2+2^3+\cdot\cdot\cdot+2^{2008}\)

\(\Rightarrow2A=2^2+2^3+2^4+\cdot\cdot\cdot+2^{2009}\)
\(\Rightarrow2A-A=\left(2^2+\cdot\cdot\cdot2^{2009}\right)-\left(2+\cdot\cdot\cdot+2^{2008}\right)\)

\(\Rightarrow A=2^{2009}-2\)

9 tháng 9 2017

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

10 tháng 12 2017

Thanks bạn

DD
16 tháng 12 2020

a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)

Các ý dưới bạn làm tương tự nhé. 

24 tháng 1 2021

cho mik hỏi câu này nữa   a= 2+2 mũ 3 + 2 mũ 5 +.....+2 mũ 51

23 tháng 7 2016

1) + S = 5 + 52 + 53 + ... + 596 (có 96 số; 96 chia hết cho 6)

S = (5 + 52 + 53 + 54 + 55 + 56) + (57 + 58 + 59 + 510 + 511 + 512) + ... + (591 + 592 + 593 + 594 + 595 + 596)

S = (5 + 54) + (52 + 55) + (53 + 56) + (57 + 510) + ... + (593 + 596)

S = 5.(1 + 53) + 52.(1 + 52) + 53.(1 + 53) + 57.(1 + 53) +  ... + 593.(1 + 53)

S = 5.126 + 52.126 + 53.126 + 57.126 + ... + 593.126

S = 126.(5 + 52 + 53 + 57 + ... + 593) chia hết cho 126

+ Do 5 + 52 + 53 + 57 + ... + 593 chia hết cho 5 mà 126 chia hết cho 2

=> S chia hết cho 10 => S có tận cùng là 0

2) 162008 - 82000

= (...6) - (84)500

= (...6) - (...6)500

= (...6) - (...6)

= (...0) chia hết cho 10

3) 13 + 23 + 33 + 43 + 53 + 63 + 73 + 83 + 93 + 103 = (x + 12)2

=> 1 + 8 + 27 + 64 + 125 + 216 + 343 + 512 + 729 + 1000 = (x + 1)2

=> (1 + 729) + (8 + 512) + (27 + 343) + (64 + 216) + 125 + 1000 = (x + 1)2

=> 730 + 520 + 370 + 280 + 1125 = (x + 1)2

=> (730 + 370) + (520 + 280) + 1125 = (x + 1)2

=> 1100 + 800 + 1125 = (x + 1)2 

=> 3025 = (x + 1)2, vô lí

24 tháng 7 2016

1) + S = 5 + 52 + 53 + ... + 596 (có 96 số; 96 chia hết cho 6)

S = (5 + 52 + 53 + 54 + 55 + 56) + (57 + 58 + 59 + 510 + 511 + 512) + ... + (591 + 592 + 593 + 594 + 595 + 596)

S = (5 + 54) + (52 + 55) + (53 + 56) + (57 + 510) + ... + (593 + 596)

S = 5.(1 + 53) + 52.(1 + 52) + 53.(1 + 53) + 57.(1 + 53) +  ... + 593.(1 + 53)

S = 5.126 + 52.126 + 53.126 + 57.126 + ... + 593.126

S = 126.(5 + 52 + 53 + 57 + ... + 593) chia hết cho 126

+ Do 5 + 52 + 53 + 57 + ... + 593 chia hết cho 5 mà 126 chia hết cho 2

=> S chia hết cho 10 => S có tận cùng là 0