Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2n+3 chi hết cho n+1
=>2n+2+1 chia hết cho n+1
Vì 2n+2 chia hết cho n+1
=> 1 chia hết cho n+1
=> n+1 thuộc Ư(1)
n+1 | n |
1 | 0 |
-1 | -2 |
KL: n=0 hoặc n= -2
4n+8 chia hết cho 2n+2
=> 4n+4+4 chia hết cho 2n+2
Vì 4n+4 chia hết cho 2n+2
=> 4 chia hết cho 2n+2
=> 2n+2 thuộc Ư(4)
2n+2 | n |
1 | KTM |
-1 | KTM |
2 | 0 |
-2 | -2 |
4 | 1 |
-4 | -3 |
KL: n thuộc..............
Ta có : 2n + 1 chia hết xho n - 1
<=> 2n - 2 + 3 chia hết cho n - 1
=> 3 chia hết cho n - 1
=> n - 1 thuộc Ư(3) = {-1;1;-3;3}
Ta có bảng
n - 1 | -3 | -1 | 1 | 3 |
n | -2 | 0 | 2 | 4 |
2n+1/n-1=n-1+n-1 +3/n-1=2+ 3/n-1
để 2+ 3/n-1 là một số tự nhiên thì n-1 phải thuộc Ư(3)
mà Ư(3)={1;3)
=> TH1:
n-1=1=>n=2
=>TH2
n-1=3=>n=4
Vậy n=2 hoặc n=4
a)Gọi ƯCLN(2n+1,2n+3) = d (d thuộc N*)
=>2n+1 chia hết cho d và 2n+3 chia hết cho d
=>(2n+3)-(2n+1) chia hết cho d
=>2 chia hết cho d
=>d thuộc Ư(2)
Ta có: Ư(2)={1;2}
Vì 2n+1 và 2n+3 là số lẻ nên d không thể bằng 2
=>d=1
Vậy ƯCLN(2n+1,2n+3) = 1 (đpcm)
b)Gọi ƯCLN(2n+5,3n+7) = d (d thuộc N*)
=>2n+5 chia hết cho d và 3n+7 chia hết cho d
=>6n+15 chia hết cho d và 6n+14 chia hết cho d
=>(6n+15)-(6n+14) chia hết cho d
=>1 chia hết cho d
=>d thuộc Ư(1) =>d=1
Vậy ƯCLN(2n+5,3n+7) = 1 (đpcm)
a) Đặt: ƯCLN(2n+1,2n+3) = d
Ta có: 2n+1 \(⋮\)d và 2n+3 \(⋮\)d
\(\Rightarrow\)(2n+3) - (2n+1) \(⋮\)d
\(\Leftrightarrow\)2n+3 - 2n-1 \(⋮\)d
\(\Leftrightarrow\)2\(⋮\)d
Vì 2n+3 ko chia hết cho 2
Nên 1\(⋮\)d
\(\Leftrightarrow\)d=1
Vậy ƯCLN( 2n+1,2n+3) = 1(đpcm)
b) Đặt ƯCLN( 2n+5,3n+7 ) = d
Ta có: 2n+5 \(⋮\)d \(\Leftrightarrow\)3(2n+5) \(⋮\)d
\(\Leftrightarrow\)6n+15 \(⋮\)d
3n+7\(⋮\)d \(\Leftrightarrow\)2(3n+7) \(⋮\)d
\(\Leftrightarrow\)6n+14 \(⋮\)d
\(\Rightarrow\)(6n+15) - (6n+14)\(⋮\)d
\(\Leftrightarrow\)6n+15 - 6n - 14\(⋮\)d
\(\Leftrightarrow\)1\(⋮\)d
\(\Leftrightarrow\)d = 1
Vậy ƯCLN(2n+5,3n+7) = 1(đpcm)
Kb vs mk nha
Bài 1)Vì M là trung điểm của OC
=> MO = CM
Vì N là trung điểm của OD
=> ON = ND
Ta có: CM + MO + ON + ND = CD= 8cm
Mà MN = MO + ON
=> MN = 1/2 CD = 1/2 x 8 = 4cm
Vậy MN = 4cm
Bài 2)
1) Gọi ƯCLN(2n + 5; 3n+7) = d
\(\Rightarrow\hept{\begin{cases}2n+5⋮d\\3n+7⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+5\right)⋮d\\2(3n+7)⋮d\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}6n+15⋮d\\6n+14⋮d\end{cases}}\)
\(\Rightarrow\left(6n+15\right)-\left(6n+14\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d\varepsilonƯ\left(1\right)\)
=> d = 1
Vậy 2n + 5 và 3n +7 là 2 số nguyên tố cùng nhau
2, Gọi ƯCLN(2n + 1; 2n + 2) = d
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\2n+2⋮d\end{cases}}\)
\(\Rightarrow\left(2n+2\right)-\left(2n+1\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d\varepsilonƯ\left(1\right)\)
=> d = 1
Vậy 2n +1 và 2n +2 là 2 số nguyên tố cùng nhau
Bài 1 :
Ta có : M là trung điểm CO
\(\Rightarrow\)MO = 1 / 2 OC ( 1 )
Ta lại có : N là trung điểm OD
\(\Rightarrow\)NO = 1 / 2 OD ( 2 )
Cộng ( 1 ) và ( 2 ), ta được :
MO + NO = 1 / 2 OC + 1 / 2 OD
\(\Leftrightarrow\)MN = 1 / 2 . ( OC + OD )
\(\Leftrightarrow\)MN = 1 / 2 . 8
\(\Leftrightarrow\)MN = 4 cm
a) Để â nhận giá trị nguyên
\(\Rightarrow8n-9⋮2n+5\)
\(\Rightarrow8n+20-29⋮2n+5\)
\(\Rightarrow4.\left(2n+5\right)-29⋮2n+5\)
mà \(4.\left(2n+5\right)⋮2n+5\)
\(\Rightarrow-29⋮2n+5\)
\(\Rightarrow2n+5\inƯ\left(-29\right)\)
tự làm nốt nhé, tick nha
Ta có \(\frac{3n-5}{n+4}=\frac{\left(3n+12\right)-17}{n+4}=\frac{3\left(n+4\right)-17}{n+4}=3-\frac{17}{n+4}\)
Để A có giá trị nguyên thì \(\frac{3n-5}{n+4}\)là số nguyên
Tương đương với \(3-\frac{17}{n+4}\) là số nguyên hay \(\frac{17}{n+4}\) là số nguyên
\(=>17⋮n+4=>n+4\inƯ\left(17\right)=\left\{17;1;-1;-17\right\}\)
\(=>n\in\left\{13;-3;-5;-21\right\}\)(th n thuôc Z)
\(3x-5=3x-5+12-12=3x+12-5-12=3x+12-17\)
đến đây mình dùng công thức \(ab+ac=a\left(b+c\right)\)
ta có \(3x+12-17=3.x+3.4-17=3\left(x+4\right)-17\)
thì đương nhiên \(\frac{3\left(x+4\right)-17}{x+4}=\frac{3\left(x+4\right)}{x+4}-\frac{17}{x+4}=3-\frac{17}{x+4}\)
xong rồi đấy bạn ( bạn ấy nhờ mình giải thích chỗ này nhé )
Ta có
n+6 chia hết cho n-3
=> n-3 +9 chia hết cho n-3
Vì n-3 chia hết cho n-3
=> 9 chia hết cho n-3
Xét các ước của 9 để tìm đk n là số tự nhiên
Ta có:
2n+8 chia hết cho n+2
=>2(n+2)+4 chia hết cho n+2
Các phần sau làm tương tự câu trên
Ta có
3n+5 chia hết cho -2n+1
=> 3n+5 chia hết cho 2n-1
=> 6n+10 chia hết cho 2n-1
=>3(2n-1)+13 chia hết cho 2n-1
Phần sau làm tương tự nhé bạn
a) 3n + 5 chia hết cho n+1
ta có 3n+5=3n+3+2=3.(n+1)+2
vì 3.(n+1) chia hết cho n+1 =>để 3.(n+1)+2 chia hết cho n+1 thì 2 phải chia hết cho n+1
=> n+1 thuộc {1;2} =>n thuộc {0;1}
b) 3n + 5 chia hết cho 2n+1
ta có: 3n+5=2n+n+1+4=(2n+1)+(n+4)
vì 2n+1 chia hết cho 2n+1 =>để (2n+1)+(n+4) chia hết cho 2n+1 thì (n+4) phải chia hết cho 2n +1
=>n+4>=2n+1
n+1+3 >=n+n+1
3>=n =>n thuộc {0;1;2;3}
* với n=0 =>n+4=4 ; 2n+1=1 vậy n+4 chia hết cho 2n+1 =>n=0 thỏa mãn
* với n=1 =>n+4=4 ; 2n+1=1 vậy n+4 chia hết cho 2n+1 =>n=0 thỏa mãn
c) 2n + 3 chia hết cho 5 - 2n
để 5-2n >=0 =>5-2n >=5-5 =>2n <=5 => n thuộc{0;1;2}
* với n=0 =>2n+3 =3 ; 5-2n=5 không thỏa mãn
*với n=1 =>2n+3=5 ;5 -2n=3 không thỏa mãn
*với n=2 =>2n+3=7 ; 5-2n =1 thỏa mãn vì 2n + 3 chia hết cho 5 - 2n
vậy n=3