\(\frac{a^2+b^2}{2}\)>= ab

b, \(\frac{1}...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2016

Ta sẽ chứng minh bầng biến đổi tương đương : 

a ) \(\frac{a^2+b^2}{2}\ge ab\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\)(Luôn đúng)

Vậy bđt được chứng minh.

b) \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\)

Vì bđt cuối luôn đúng nên bđt ban đầu được chứng minh.

Bạn cần thêm điều kiện a,b>0 cho cả a) nữa nhé :)

19 tháng 7 2016

a/ ta có :\(\left(a-b\right)^2\ge0\Rightarrow a^2-2ab+b^2\ge0\Rightarrow a^2+b^2\ge2ab\Rightarrow\frac{a^2+b^2}{2}\ge ab\) ( ĐPCM)

31 tháng 3 2019

1) Theo bđt AM-GM,ta có: \(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=a\)

Suy ra \(\frac{a^2}{b+c}\ge a-\frac{b+c}{4}\)

Thiết lập hai BĐT còn lại tương tự và cộng theo vế ta có đpcm

31 tháng 3 2019

4/\(\frac{a^2}{b}+b\ge2\sqrt{\frac{a^2}{b}.b}=2a\Rightarrow\frac{a^2}{b}\ge2a-b\)

Thiết lập 2 BĐT còn lai5n tương tự,cộng theo vế ta có đpcm.

24 tháng 4 2018

áp dụng bất đẳng thức cosi

\(\frac{a^2}{b^3}+\frac{1}{a}+\frac{1}{a}\ge3\sqrt[3]{\frac{a^2}{b^3}\cdot\frac{1}{a}\cdot\frac{1}{a}}=3\cdot\frac{1}{b}\)

đoạn tiếp bạn tự làm nha

26 tháng 4 2020

cảm ơn bn nha

26 tháng 4 2020

hjhj hong có gì :'3333

5 tháng 4 2017

a) đề thiếu òi bạn à            

20 tháng 7 2017

1.a>0.√a

2.c/mb/z+x/y=a/b6

=x/y=y/x

4.xxy/2 2

5.a/b+ab=ab2

NV
11 tháng 6 2019

\(C=\frac{1}{a^2+b^2}+\frac{1}{2ab}+ab+\frac{16}{ab}+\frac{17}{2ab}\)

\(C\ge\frac{4}{a^2+b^2+2ab}+2\sqrt{ab.\frac{16}{ab}}+\frac{17}{\frac{2\left(a+b\right)^2}{4}}\)

\(C\ge\frac{4}{\left(a+b\right)^2}+8+\frac{34}{\left(a+b\right)^2}\ge\frac{4}{4^2}+8+\frac{34}{4^2}=\frac{83}{8}\)

Dấu "=" khi \(a=b=2\)

Ta có \(ab\le\frac{\left(a+b\right)^2}{4}=\frac{1}{4}\)

       \(a^2+b^2\le\frac{\left(a+b\right)^2}{2}=\frac{1}{2}\)

\(\Rightarrow\frac{3}{ab}+\frac{1}{a^2+b^2}\ge\frac{3}{\frac{1}{4}}+\frac{1}{\frac{1}{2}}=12+2=14\)

Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)

17 tháng 8 2019

\(\left(a^2+b^2\right)\left(1^2+1^2\right)\ge\left(a+b\right)^2\left(bunhiacopxki\right)\)

\(\Rightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\) chứ bạn .

21 tháng 8 2017

ko bts nha

21 tháng 8 2017

Ta có 27^5=3^3^5=3^15
243^3=3^5^3=3^15
Vậy A=B
2^300=2^(3.100)=2^3^100=8^100
3^200=3^(2.100)=3^2^100=9^100
Vậy A<B