Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)Áp dụng Bđt Am-Gm \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=2\)
2)Áp dụng Am-Gm \(a^2+b^2\ge2\sqrt{a^2b^2}=2ab;b^2+c^2\ge2bc;a^2+c^2\ge2ca\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
=>ĐPcm
3)(a+b+c)2\(\ge\)3(ab+bc+ca)
=>a2+b2+c2+2ab+2bc+2ca\(\ge\)3ab+3bc+3ca
=>a2+b2+c2-ab-bc-ca\(\ge\)0
=>2a2+2b2+2c2-2ab-2bc-2ca\(\ge\)0
=>(a2-2ab+b2)+(b2-2bc+c2)+(c2-2ac+a2)\(\ge\)0
=>(a-b)2+(b-c)2+(c-a)2\(\ge\)0
4)đề đúng \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)
3 bài thì thấy 1 bài có trên mạng rồi, buồn thật:( Bài cuối từ từ tí mở Maple lên check đề. Thấy lạ lạ không dám làm ngay:v
Bài 1: Ez game, chỉ là Buffalo Way, mà Ji Chen (tác giả BĐT Iran 96 có giải rồi, mình không giải lại): hard inequalities
Bài 2: Đặt \(\left(a;b;c\right)=\left(\frac{3x}{x+y+z};\frac{3y}{x+y+z};\frac{3z}{x+y+z}\right)\) rồi quy đồng lên xem.
Bài 3: Tí check đề cái đã.
Áp dụng bđt Cauchy cho 2 số không âm :
\(x^2+\frac{1}{x}\ge2\sqrt[2]{\frac{x^2}{x}}=2.\sqrt{x}\)
\(y^2+\frac{1}{y}\ge2\sqrt[2]{\frac{y^2}{y}}=2.\sqrt{y}\)
Cộng vế với vế ta được :
\(x^2+y^2+\frac{1}{x}+\frac{1}{y}\ge2.\sqrt{x}+2.\sqrt{y}=2\left(\sqrt{x}+\sqrt{y}\right)\)
Vậy ta có điều phải chứng mình
Ta đi chứng minh:\(a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)* đúng *
Khi đó:
\(\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b\right)+abc}=\frac{1}{ab\left(a+b+c\right)}=\frac{c}{abc\left(a+b+c\right)}\)
Tương tự:
\(\frac{1}{b^3+c^3+abc}\le\frac{a}{abc\left(a+b+c\right)};\frac{1}{c^3+a^3+abc}\le\frac{b}{abc\left(a+b+c\right)}\)
\(\Rightarrow LHS\le\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}\)
Câu 1:
Ta có: \(\left(\dfrac{a+b}{2}\right)^2\ge ab\)
\(\Leftrightarrow\dfrac{\left(a+b\right)^2}{2^2}-ab\ge0\)
\(\Leftrightarrow\dfrac{a^2+2ab+b^2-4ab}{4}\ge0\)
\(\Leftrightarrow\dfrac{a^2-2ab+b^2}{4}\ge0\)
\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)
Vì \(\left(a-b\right)^2\ge0\forall a,b\)
\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)
\(\Rightarrow\left(\dfrac{a+b}{2}\right)^2\ge ab\) (1)
Ta có: \(\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\)
\(\Leftrightarrow\dfrac{a^2+b^2}{2}-\dfrac{\left(a+b\right)^2}{4}\ge0\)
\(\Leftrightarrow\dfrac{2a^2-2b^2-a^2-2ab-b^2}{4}\ge0\)
\(\Leftrightarrow\dfrac{a^2-2ab-b^2}{4}\ge0\)
\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)
Vì \(\left(a-b\right)^2\ge0\forall a,b\)
\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)
\(\Rightarrow\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\) (2)
Từ (1) và (2) \(\Rightarrow ab\le\left(\dfrac{a+b}{2}\right)^2\le\dfrac{a^2+b^2}{2}\)
5 , a3+b3+c3\(\ge\) 3abc
\(\Leftrightarrow\) a3+3a2b+3ab2+b3+c3-3a2b-3ab2-3abc\(\ge\) 0
\(\Leftrightarrow\) (a+b)3+c3-3ab(a+b+c) \(\ge0\)
\(\Leftrightarrow\) (a+b+c)(a2+2ab+b2-ac-bc+c2)-3ab(a+b+c) \(\ge0\)
\(\Leftrightarrow\) (a+b+c)(a2+b2+c2-ab-bc-ca)\(\ge0\) (1)
ta co : a,b,c>0 \(\Rightarrow\)a+b+c>0 (2)
(a-b)2+(b-c)2+(c-a)2\(\ge0\)
<=> 2a2+2b2+2c2-2ac-2cb-2ab\(\ge0\)
<=>a2+b2+c2-ab-bc-ac\(\ge\) 0 (3)
Từ (1)(2)(3)=> pt luôn đúng
a/ \(\left(\frac{x+y}{2}\right)^2\ge xy\)
Ta có \(\left(\frac{x+y}{2}\right)^2-xy\)
\(=\frac{\left(x+y\right)^2}{2^2}-xy\)
\(=\frac{x^2+2xy+y^2}{4}-\frac{4xy}{4}\)
\(=\frac{x^2+2xy+y^2-4xy}{4}\)
\(=\frac{x^2-2xy+y^2}{4}=\frac{\left(x-y\right)^2}{4}\)
mak ta lại có :
\(\left(x-y\right)^2\ge0\Rightarrow\frac{\left(x-y\right)^2}{4}\ge0\)
\(\Rightarrow\left(\frac{x+y}{2}\right)^2-xy\ge0\)\(\Rightarrow\left(\frac{x+y}{2}\right)^2\ge xy\)
b/ \(x^2\ge2y\left(x-y\right)\)
ta có \(x^2-2y\left(x-y\right)\)
\(=x^2-2xy+2y^2\)
\(=x^2-2xy+y^2+y^2\)
\(=\left(x^2-2xy+y^2\right)+y^2\)
\(=\left(x-y\right)^2+y^2\)
Ta lại có \(\orbr{\begin{cases}\left(x-y\right)^2\ge0\\y^2\ge0\end{cases}}\)
\(\Rightarrow\left(x-y\right)^2+y^2\ge0\)
\(\Rightarrow x^2-2y\left(x-y\right)\ge0\)
\(\Rightarrow x^2\ge2y\left(x-y\right)\)
c/ \(4a^4-4a^3+a^2\ge0\)
ta có : \(4a^4-4a^3+a^3\)
\(=a^2\left(4a^2-4a+1\right)\)
\(=a^2\left(2a-1\right)^2\)
ta có \(\orbr{\begin{cases}a^2\ge0\\\left(2a-1\right)^2\ge0\end{cases}}\)
\(\Rightarrow a^2\left(2a-1\right)^2\ge0\)
\(\Rightarrow4a^4-4a^3+a^3\ge0\)
a)<=>4ab\(\le\)(a+b)2
<=>4ab\(\le\)a2+b2+2ab
<=>a2+b2-2ab\(\ge\)0
<=>(a-b)2\(\ge\)0 (BĐT đúng)
Vậy...........
b)<=>(a2-2a+1)+(b2-2b+1)+(c2-2c+1)\(\ge\)0
<=>(a-1)2+(b-1)2+(c-1)2\(\ge\)(BĐT đúng)
Vậy....................
a) áp dụng BĐT a^2+b^2>=2ab
=> a^2+b^2 +2ab>=4ab
=>(a+b)^2>=4ab
=>\(\frac{\left(a+b\right)^2}{4}\ge ab\)
b)áp dụng BĐT cô si có:
a^2+1>=2a; b^2+1>=2b;c^2+1>=2c
=>cộng theo vế được a^2+b^2+c^2+3>=2a+2b+2c=2*(a+b+c)