Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d) \(10^n+72n-1\)\(=100...0-1+72n\)
=\(999...9-9n+81n\)
n chữ số 9
=\(9.\left(111...1-n\right)+81n\)
VÌ 1 số và tổng các chữ số có cùng số dư trong phép chia cho 9 => 111...1 - n chia hết 9
mà 81n chia hết 9 => 10n + 72n -1 chia hết 9
b) \(10^n+18n-1\)
<=> \(100..0+\left(27n-9n\right)-1\)chia hết \(27\)
n
<=> \(\left(100...0-1-9n\right)+27n\)chia hết \(27\)
n
<=> \(\left(99...9-9n\right)+27n\)chia hết \(27\)
n
<=> \(9.\left(11..1-n\right)+27n\)chia hết \(27\)
<=> \(9.9k+27n\)chia hết \(27\)
<=> \(81k+27n\)chia hết \(27\)
a)Ta thấy 11..11 có tổng các chữ số là n.Ta có:
2n+11...1=2n+n=3n chia hết cho 3
b, 10n-1-9+27n
=99...9 - 9n+27n
=9.(11...1 - n) +27 chia hết cho 27
CMR:
a) F= 10^28+8 chia hết cho 72.
b) J= 10^n+18n-1 chia hết cho 27.
c) K= 10^n+72n-1 chia hết cho 81.
a) Ta có :
\(72=8.9\)
Ta thấy :
\(10^{28}⋮8\)
\(8⋮8\)
\(\Rightarrow10^{28}+8⋮8\)
Tổng các chữ số của \(10^{28}=1\)
Tổng các chữ số của \(8=8\)
\(\Rightarrow\)Tổng các chữ số của \(10^{28}+8=1+8=9⋮9\)
\(\Rightarrow10^{28}⋮8;9\)
\(\Rightarrow10^{28}⋮72\)
\(\Rightarrow F⋮72\left(đpcm\right)\)
b) Ta có :
\(10^n+18n-1=10^n-1+18n=999...9\)( n chữ số 9 ) \(+18n\)
\(=9\left(111....1+2n\right)\)( n chữ số 1 )
Xét \(111...1+2n=111...1-n+3n\)
Dễ thấy tổng các chữ số của \(111...1\)là n
\(\Rightarrow111...1-n⋮3\)
\(\Rightarrow111...1-n+3n⋮3\)
\(\Rightarrow10^n+18n-1⋮27\)
\(\Rightarrow J⋮27\left(đpcm\right)\)
c) Ta có :
\(K=10^n+72n-1=10^n-1+72n\)
\(10^n-1=999...9\)( n - 1 chữ số 9 )
\(=9\left(111...1\right)\)( n chữ số 1 )
\(K=10^n-1+72n=9\left(111...1\right)+72n\)
\(\Rightarrow K:9=111...1+8n=111...1-n+9n\)
Ta thấy :
\(111...1\)( n chữ số 1 ) có tổng các chữ số là n
\(\Rightarrow111...1-n⋮9\)
\(\Rightarrow K:9=111...1-n+9n⋮9\)
\(\Rightarrow K⋮81\left(đpcm\right)\)
a,Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)
b,Ta có:
10^n+72n-1
=10^n-1+72n
=(10-1)[10^(n-1)+10^(n-2)+...+10+1]+72n
=9[10^(n-1)+10^(n-2)+...+10+1]-9n+81n
=9[10^(n-1)+10^(n-2)+...+10+1-n]+81n
=9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n
ta có 10^k - 1 = (10-1)[10^(k-1)+...+10+1] chia hết cho 9 =>9[(10^(n-1)-1) +(10^(n-2)-1) +... +(10-1) +(1-1)] chia hết cho 81 =>9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n chia hết cho 81 =>đpcm.
Thanks