Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2. Ta có: P = 2x2 + y2 - 4x - 4y + 10
P = 2(x2 - 2x + 1) + (y2 - 4y + 4) + 4
P = 2(x - 1)2 + (y - 2)2 + 4 \(\ge\)4 \(\forall\)x;y
=> P luôn dương với mọi biến x;y
3 Ta có:
(2n + 1)(n2 - 3n - 1) - 2n3 + 1
= 2n3 - 6n2 - 2n + n2 - 3n - 1 - 2n3 + 1
= -5n2 - 5n = -5n(n + 1) \(⋮\)5 \(\forall\)n \(\in\)Z
a/ Chia đa thức một biến bình thường. Ta sẽ có thương là n2 - 1, số dư là 7
Để n3 +n2-n+5 chia hết cho n+2
thì 7 chia hết cho n+2
\(\Rightarrow\)n+2\(_{ }\in\)Ư(7)
\(\Rightarrow\)n+2\(\in\)\(\left\{1,-1,7,-7\right\}\)
\(\Rightarrow n\in\left\{-1,-3,5,-9\right\}\)
Câu b tương tự
1) ta có : \(A=\left(2m-5\right)^2-\left(2m+5\right)^2+40\)
\(A=4m^2-20m+25-\left(4m^2+20m+25\right)+40\)
\(A=4m^2-20m+25-4m^2-20m-25+40\)
\(A=40-40m\) ta có : \(A\) phụ thuộc vào biến \(m\)
\(\Rightarrow\) đề sai
câu 3 quá dể bn tự lm nha
3) \(P=\left(3x+4\right)^2-10x-\left(x-4\right)\left(x+4\right)\)
\(P=9x^2+24x+16-10x-\left(x^2-4\right)\)
\(P=9x^2+24x+16-10x-x^2+4=8x^2+14x+20\)
4) \(Q=x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1\)
ta có : \(\left(x-2\right)^2\ge0\) với mọi \(x\) \(\Rightarrow\left(x-2\right)^2+1\ge1\) với mọi \(x\)
\(\Rightarrow\) GTNN của Q là 1 khi \(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
vậy GTNN của Q là 1 khi \(x=2\)
B1:Ta có ;n(n+5)- (n-3) (n+2)= n2 + 5n- n2- 2n+3n+6= 6n+6= 6.(n+1)
=> 6.(n+1) chia hết cho 6 với mọi n thuộc N
Vậy;...........................