Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CHỨNG MINH S CHIA HẾT CHO 10 :
\(S=4+4^2+...+4^{2004}\)
\(S=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{2003}+4^{2004}\right)\)
\(S=1\left(4+4^2\right)+4^3\left(4+4^2\right)+...+4^{2003}\left(4+4^2\right)\)
\(S=1.20+4^3.20+...+4^{2003}.20\)
\(S=20.\left(1+4^3+...+4^{2003}\right)\)CHIA HẾT CHO 10 (VÌ 20 CHIA HẾT CHO 10 )
\(=>dpcm\)
CHỨNG MINH 3S+4 CHIA HẾT CHO 42004
\(S=4+4^2+4^3+...+4^{2004}\)
\(4S=4+4^2+4^3+...+4^{2005}\)
\(3S=4S-S=4^{2005}-4\)
MÀ 42005 CHIA HẾT CHO 42004
\(=>3S+4\)CHIA HẾT CHO \(4^{2004}\left(dpcm\right)\)
Lời giải:
$A=(4+4^2)+(4^3+4^4)+....+(4^{23}+4^{24})$
$=(4+4^2)+4^2(4+4^2)+....+4^{22}(4+4^2)$
$=(4+4^2)(1+4^2+...+4^{22})$
$=20(1+4^2+...+4^{22})\vdots 20$
----------------------------
$A=(4+4^2+4^3)+(4^4+4^5+4^6)+....+(4^{22}+4^{23}+4^{24})$
$=4(1+4+4^2)+4^4(1+4+4^2)+....+4^{22}(1+4+4^2)$
$=(1+4+4^2)(4+4^4+...+4^{22})$
$=21(4+4^4+....+4^{22})\vdots 21$
----------------------
Vậy $A\vdots 20; A\vdots 21$. Mà $(20,21)=1$ nên $A\vdots (20.21)$ hay $A\vdots 420$
S = 4 + 42 + 43 + 44 + 45 + 46 + .......................... + 42010 + 42011 + 42012 + 42013 + 42015 + 42016
S = (4 + 42 + 43 + 44 + 45 + 46) + .......................... + (42010 + 42011 + 42012 + 42013 + 42015 + 42016)
S = (4 + 16 + 64 + 256 + 1024 + 4096) + .................................. + 42009.(4 + 16 + 64 + 256 +1024+ 4096)
S = 5460 + .......................... + 42009.5460
S = 5460.(1 + .................+ 42009)
S = 13.420.(1 +............... + 42009)
420=4.5.3.7
ta thấy S chia hết cho 4
4 đồng dư với 1 mod 3 =) 4+4^2+...4^2016 đồng dư 2016 mod 3 mà 2016 chia hết cho 3
vì 4+4^2=20, 4^3+4^4=..0, tương tự ta có 1008 cặp => S tận cùng là 0
4+4^2+4^3=84 chia hết cho 7=> có 673 cặp 3 số như thế( 2016 chia hết cho 3) =>S chia hết cho 7
từ tất cả => S chia hết hoc 420(4.5.7.3)
A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + (4^7 + 4^8 + 4^9 + 4^10 + 4^11 + 4^12) + (4^13 + 4^14 + 4^15 + 4^16 + 4^17 + 4^18) + (4^19 + 4^20 + 4^21 + 4^22 + 4^23 + 4^24)
A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^6(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^12(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^18(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6)
A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6).(1+4^6+4^12+4^18)
A = 5460.(1+4^6+4^12+4^18)
A = 420 . 13(1+4^6+4^12+4^18) => A chia hết cho 420
A = 20.21.13(1+4^6+4^12+4^18) => A chia hết cho 20 ; 21
S=4+4^2+4^3+4^4+...+4^2016
S=(4+4^2 +...+4^6)+....+(4^2011+4^2012+...+4^2016)
S=5460+...+4^2010*(4+4^2+...+4^6)
S=5460+..+5460*4^2010
S=5460*(1+..+4^2010)
Vì 5460 chia hết cho 420 nên S chia hết cho 420
Ta có
H=4+4^2+...+4^24
H=(4+4^2) + (4^3+4^4)+...+(4^23+4^24)
<=>H=20+4^2.20+...+4^22.20
<=>h=20(1+4^2+...+4^22) chia hết cho 20
Ta có
H=4 +4^2+...+4^24
<=>H=(4+4^2+4^3) +(4^4+4^5+4^6)+....+(4^22+4^23+4^24)
<=>H=4.21+4^4.21+....+4^22 .21
<=>H=21(4+4^4+...+4^22) chia hết cho 21
H=4+4^2+...+4^2
<=>h=(4+4^2+4^3+4^4+4^5+4^6)+....+(4^19+4^20+4^21+4^22+4^23+4^24)
=5420 + ...+4^18.5420
=13.420 +....+13.420.4^18
chia hết cho 420
nhớ tick mình nha,cảm ơn nhiều
Ta có:
A = 4 + 42 + 43 +......+ 423+ 424
= (4 + 42)) + (43 +44)......+ (423+ 424)
=(4 + 42).1+(4 + 42).42+...+(4 + 42).422
=20.(1+42+...+422) chia hết cho 20
Ta lại có:
A = 4 + 42 + 43 +......+ 423+ 424
=(4 + 42 + 43)+...+(422+423+424)
=(4 + 42 + 43).1+...+(4 + 42 + 43).421
=21.(1+...+421) chia hết cho 21
Vì A chia hết cho 21 và 20 , mà ƯCLN(20;21)=1 => A chia hết cho 20 và 21 tức là A chia hết cho 20.21=420
Vậy...
A = 4 + 4² + 4³ + ... + 4²³ + 4²⁴
Số số hạng của A:
24 - 1 + 1 = 24
Do 24 ⋮ 2 nên ta có thể nhóm các số hạng của A thành từng nhóm mà mỗi nhóm có 2 số hạng như sau:
A = (4 + 4²) + (4³ + 4⁴) + ... + (4²³ + 4²⁴)
= 20 + 4².(4 + 4²) + ... + 4²².(4 + 4²)
= 20 + 4².20 + ... + 4²².20
= 20.(1 + 4² + ... + 4²²) ⋮ 20
Vậy A⋮ 20 (1)
Do 24 ⋮ 3 nên ta có thể nhóm các số hạng của A thành từng nhóm mà mỗi nhóm có 3 số hạng như sau:
A = (4 + 4² + 4³) + (4⁴ + 4⁵ + 4⁶) + ... + (4²² + 4²³ + 4²⁴)
= 4.(1 + 4 + 4²) + 4⁴.(1 + 4 + 4²) + ... + 4²².(1 + 4 + 4²)
= 4.21 + 4⁴.21 + ... + 4²².21
= 21.(4 + 4⁴ + ... + 4²²) ⋮ 21
Vậy A ⋮ 21 (2)
Từ (1) và (2) ⇒ A ⋮ 20 . 21 (do 20 và 21 nguyên tố cùng nhau)
⇒ A ⋮ 420
Vậy A chia hết cho 20; 21; 420
Lời giải:
Hiển nhiên $A\vdots 4$ do các số hạng đều chia hết cho $4$. (1)
Lại có:
$A=(4+4^2)+(4^3+4^4)+....+(4^{2003}+4^{2004})$
$=4(1+4)+4^3(1+4)+....+4^{2003}(1+4)$
$=(1+4)(4+4^3+....+4^{2003})=5(4+4^3+...+4^{2003})\vdots 5$ (2)
$A=(4+4^2+4^3)+(4^4+4^5+4^6)+....+(4^{2002}+4^{2003}+4^{2004})$
$=4(1+4+4^2)+4^4(1+4+4^2)+....+4^{2002}(1+4+4^2)$
$=(1+4+4^2)(4+4^4+....+4^{2002})=21(4+4^4+...+4^{2002})\vdots 21$ (3)
Từ $(1); (2); (3)$ mà $4,5,21$ đôi một nguyên tố cùng nhau.
$\Rightarrow A\vdots (4.5.21)$ hay $A\vdots 420$