Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-4\right)^2+\left(x+5\right)^2\)
Nếu đa thức trên có nghiệm là n
\(\Leftrightarrow\left(n-4\right)^2+\left(n+5\right)^2=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}\left(n-4\right)^2=0\\\left(n+5\right)^2=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}n-4=0\\n+5=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}n=4\\n=-5\end{array}\right.\) vô lí
Vậy đa thức trên không có nghiệm
a) \(x^2+x+1=x^2+2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\)nên \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
Vậy đa thức trên vô nghiệm
b) \(x^2+2x+3=x^2+2x+1+2=\left(x+1\right)^2+2\)
Vì \(\left(x+1\right)^2\ge0\)nên \(\left(x+1\right)^2+2>0\)
Vậy đa thức trên vô nghiệm
\(P\left(x\right)=5x^5+5x^4-2x^2+5x^2-x^5-4x^4+1-4x^5=x^4+3x^2+1\)
Mà \(x^4\ge0;3x^2\ge0=>x^4+3x^2+1\ge1>0\) nên \(P\left(x\right)\) vô nghiệm
Hok tốt nha !
P(x) = 5x5 + 5x4 - 2x2 + 5x2 - x5 - 4x4 + 1 - 4x5
P(x) = (5x5 - x5 - 4x5) + (5x4 - 4x4) - (2x2 - 5x2) + 1
P(x) = x4 + 3x2 + 1
Ta có: x4 \(\ge\)0 \(\forall\)x; 3x2 \(\ge\)0 \(\forall\)x
=> x4 + 3x2 + 1 \(\ge\)1 \(\forall\)x
=> P(x) \(\ne\)0
=> P(x) vô nghiệm
Ta có : C(x) = P(x) + H(x)
=> C(x) = 4x2 - 1 + x4 + 3
=> C(x) = x4 + 4x2 + 2
Mà x4 \(\ge0\forall x\)
4x2 \(\ge0\forall x\)
Nên C(x) = x4 + 4x2 + 2 \(\ge2\forall x\)
=> C(x) = x4 + 4x2 + 2 \(\ne0\forall x\)
Vậy đa thức C(x) vô nhiệm
\(=\left(x^4+x^3+x^2\right)+\left(3x^2+3x+3\right)=x^2\left(x^2+x+1\right)+3\left(x^2+x+1\right)\)
\(=\left(x^2+3\right)\left(x^2+x+1\right)=\left(x^2+3\right)\left(x^2+2\cdot\frac{1}{2}x+\left(\frac{1}{2}\right)^2+\frac{3}{4}\right)\)
\(=\left(x^2+3\right)\left(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right)\)
vì \(x^2>=0;3>0\Rightarrow x^2+3>0\)
\(\left(x+\frac{1}{2}\right)^2>=0;\frac{3}{4}>0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
\(\Rightarrow\left(x^2+3\right)\left(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right)>0\Rightarrow\)đa thức trên vô nghiệm
a.Ta có : \(^{x^2}\)\(\ge\)0\(\forall x\)
\(\Leftrightarrow x^2+3\ge3\forall x\)
\(\Rightarrow\)Đa thức trên vô nghiệm
a, x^2 + 3
có x^2 > 0 => x^2 + 3 > 3
=> đa thứ trên vô nghiệm
b, x^4 + 2x^2 + 1
x^4 > 0 ; 2x^2 > 0
=> x^4 + 2x^2 > 0
=> x^4 + 2x^2 + 1 > 1
vậy _
c, -4 - 3x^2
= -(4 + 3x^2)
3x^2 > 0 => 3x^2 + 4 > 4
=> -(4 + 3x^2) < 4
vậy_
Áp dụng hằng đẳng thức đáng nhớ ta có :
x4+2x2+1=(x2+1)2
Ta có : (x2+1)2 luôn luôn lớn hơn hoặc bằng 0
=>PT trên vô nghiệm
Theo hằng đẳng thức đáng nhớ , ta có :
\(x^4+2x^2+1=\left(x^2+1\right)^2\)
Vì \(x^2\ge0\).Nên \(x^2+1\ge1;\Rightarrow x^2+1>0\)
\(\Rightarrow\left(x^2+1\right)^2>0\)
Vậy phương trình vô nghiệm.
gọi 3.x4+55.x-2 = M(x)
3.x4+55.x-2=> x.(3.x3+55)-2
TH1: x=0 TH2: x>0 TH3: x<0
=> M(x)= 0 => M(x)>0 => M(x)<0
vậy M(x) vô nghiệm