Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: (2n+5)2-25=(2n+5)2-52=(2n+5-5).(2n+5+5)=2n.(2n+10)=2.n.2.(n+5)
=4.n.(n+5) chia hết cho 4
=>(2n+5)2-25 chia hết cho 4
Bài 1:
b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)
\(=4n^2-9-4n^2+36n\)
\(=36n-9⋮9\)
BN thử vào câu hỏi tương tự xem có k?
Nếu có thì bn xem nhé!
Nếu k thì xin lỗi đã làm phiền bn
Hội con 🐄 chúc bạn học tốt!!!
a) (4n+3)^2-25=(4n+3+5)(4n-3+5)=(4n+8)(4n-2)=16n^2-8n+32n-16
Vì 16n^2 chia hết cho 8;8n chia hết cho 8;32n chia hết cho 8;16 chia hết cho 8
=>16n^2-8n+32n-16 chia hết cho 8
b)(2n+3)^2-9
=(2n+3-3)(2n+3+3)
=2n(2n+6)=4n^2+12n
Vì 4n^2 chia hết cho 4,12n chia hết cho 4=>4n^2+12n chia hết cho 4
Bài 1:
Ta có: \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)
\(=2n^3+2n^2-2n^3-2n^2+6n\)
\(=6n⋮6\)
1) \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)=2n^3+2n^2-2n^3-2n^2+6n=6n⋮6\forall n\in Z\)
2) \(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1=3n-2n^2-4n^2+3n+1-1=-6n^2+6n=6\left(-n^2+n\right)⋮6\forall n\in Z\)
Bạn vào câu hỏi tương tự nha !!! Tích mình nhé !
Bài 5:
a) Chứng minh (2n+5)2−25(2n+5)2−25 chia hết cho 44 với mọi n∈Z.n∈Z.
Ta có: (2n+5)2−25=4n2+20n+25−25=4n2+20n=4n(n+5).(2n+5)2−25=4n2+20n+25−25=4n2+20n=4n(n+5).
Vì 4⋮4⇒4n(n+5)⋮4∀n∈Z.
# Chúc bạn học tốt!