Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Liên quan gì bạn @Tam Mai, chứng minh chứ không phải bấm máy tính
Hàm số bậc nhất \(\Leftrightarrow\left\{{}\begin{matrix}m^2-3m=0\\2m^2+m\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\left(m-3\right)=0\\m\left(2m+1\right)\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=0\\m=3\end{matrix}\right.\\\left\{{}\begin{matrix}m\ne0\\m\ne-\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m=3\)
A = \(\left(\dfrac{\sqrt{x}+1}{2\sqrt{x}-2}+\dfrac{3}{x-1}-\dfrac{\sqrt{x}+3}{2\sqrt{x}+2}\right)\cdot\dfrac{4x-4}{5}\) (ĐK: x \(\ge\) 0; x \(\ne\) 1)
A = \(\left(\dfrac{\sqrt{x}+1}{2\left(\sqrt{x}-1\right)}+\dfrac{3}{x-1}-\dfrac{\sqrt{x}+3}{2\left(\sqrt{x}+1\right)}\right)\cdot\dfrac{4\left(x-1\right)}{5}\)
A = \(\left(\dfrac{\left(\sqrt{x}+1\right)^2}{2\left(x-1\right)}+\dfrac{6}{2\left(x-1\right)}-\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{2\left(x-1\right)}\right)\cdot\dfrac{4\left(x-1\right)}{5}\)
A = \(\left(\dfrac{x+2\sqrt{x}+1+6-x-3\sqrt{x}+\sqrt{x}+3}{2\left(x-1\right)}\right)\cdot\dfrac{4\left(x-1\right)}{5}\)
A = \(\dfrac{10}{2\left(x-1\right)}\cdot\dfrac{4\left(x-1\right)}{5}\)
A = 4
Vậy A không phụ thuộc vào x
Chúc bn học tốt!
Ta có: \(A=\left(\dfrac{\sqrt{x}+1}{2\sqrt{x}-2}+\dfrac{3}{x-1}-\dfrac{\sqrt{x}+3}{2\sqrt{x}+2}\right)\cdot\dfrac{4x-4}{5}\)
\(=\dfrac{x+2\sqrt{x}+1+6-\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{4\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{5}\)
\(=\dfrac{x+2\sqrt{x}+7-x-2\sqrt{x}+3}{1}\cdot\dfrac{2}{5}\)
\(=10\cdot\dfrac{2}{5}=4\)
ĐKXĐ : \(x\ge1\)
\(\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}=\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}\)
\(=\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|\)
Xét các trường hợp :
1. Nếu \(1\le x\le2\)thì \(\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|=\sqrt{x-1}+1-\left(1-\sqrt{x-1}\right)=2\sqrt{x-1}\le2\)
2. Nếu \(x>2\) thì
\(\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|=\sqrt{x-1}+1-\sqrt{x-1}+1=2\)
Gộp hai trường hợp có đpcm.
a) \(n^3-4n=n^3-n-3n=\left(n-1\right)n\left(n+1\right)-3n\)
luôn chia hết cho 3 với mọi n
=> ĐPCM >>>>
b) \(pt\Leftrightarrow2\left(x+5\right)^2=27-3y^2\) (1)
Từ (1) => vp chẵn => y lẻ
Vì 2\(\left(x+5\right)^2\ge0\) với mọi x => \(27-3y^2\ge0\Leftrightarrow3y^2\le27\Leftrightarrow y^2\le9\Leftrightarrow-3\le y\le3\)
Vì y lẻ và y thuộc Z => y thuộc ( -3 ; -1 ; 1 ; 3 )
(+) với y = -3 ; 3 => \(2\left(x+5\right)^2=27-3\cdot9=0\)
<=> x = -5
(+) với y = +-1 => \(2\left(x+5\right)^2=27-3=24\)
<=> (x+5)^2 = 12 ( loại do x thuộc Z )
Vậy phương trình (1) cớ hai nghiệm nguyên là ( -3 ; - 5 ) và ( 3 ; 5 )
Bài 13:
a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge1\\x\ne3\end{matrix}\right.\)
b: Ta có: \(P=\dfrac{x-3}{\sqrt{x-1}-\sqrt{2}}\)
\(=\dfrac{\left(\sqrt{x-1}-\sqrt{2}\right)\left(\sqrt{x-1}+\sqrt{2}\right)}{\sqrt{x-1}-\sqrt{2}}\)
\(=\sqrt{x-1}+\sqrt{2}\)
c: Thay \(x=12-6\sqrt{2}\) vào P, ta được:
\(P=\sqrt{11-6\sqrt{2}}+\sqrt{2}=3-\sqrt{2}+\sqrt{2}=3\)
d: Ta có: \(\sqrt{x-1}\ge0\forall x\) thỏa mãn ĐKXĐ
\(\Leftrightarrow\sqrt{x-1}+\sqrt{2}\ge\sqrt{2}\forall x\) thỏa mãn ĐKXĐ
Dấu '=' xảy ra khi x=1
\(VT=\sqrt{14}-\sqrt{13}=\dfrac{1}{\sqrt{14}+\sqrt{13}}\)
\(VP=2\sqrt{3}-\sqrt{11}=\sqrt{12}-\sqrt{11}=\dfrac{1}{\sqrt{12}+\sqrt{11}}\)
Ta thấy: \(\sqrt{14}+\sqrt{13}>\sqrt{12}+\sqrt{11}\)
\(\Leftrightarrow\dfrac{1}{\sqrt{14}+\sqrt{13}}< \dfrac{1}{\sqrt{12}+\sqrt{11}}\)
Hay \(VT< VP\)
Vậy \(\sqrt{14}-\sqrt{13}< 2\sqrt{3}-\sqrt{11}\)