Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình như đề là thế này :
\(\frac{1}{\sqrt{1}+\sqrt{2}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}=9\)
= \(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}=\sqrt{100}-1=10-1=9\)
ta có \(\frac{1}{\sqrt{1.2}}khác\frac{1}{\sqrt{1}+\sqrt{2}}\)
................................
\(\frac{1}{\sqrt{99.100}}khấc\frac{1}{\sqrt{99}+\sqrt{100}}\)
tham khảo:https://www.vatgia.com/hoidap/5272/114204/toan-kho-lop-9-day--help.html
ta có : ax=-(x^2+1)
bx=-(x^2+1)
abx=-(x^2+1)
=>ax=bx=abx
nếu x<>0 thi a=b=ab
=> a=b=1 => 4/(ab)^2 -1/a^2-1/b^2=2
nếu x=0 thi a=b=-1
thì 4/(ab)^2 -1/a^2-1/b^2=2
vậy 4/(ab)^2 -1/a^2-1/b^2=2
1. Ta chọn $x=3k;y=4k;z=5k$ với $k$ là số nguyên dương.
Khi này $x^2+y^2=25k^2 =z^2$. Tức có vô hạn nghiệm $(x;y;z)=(3k;4k;5k)$ với $k$ là số nguyên dương thỏa mãn
1, ^ACD = 900 ( góc nt chắn nửa đường tròn )
2, Xét tam giác AHB và tam giác ACD có :
^AHB = ^ACD = 900
^ABC = ^ADC ( góc nt chắn cung AC )
Vậy tam giác AHB ~ tam giác ACD ( g.g )
=> AH/AC = HB/CD => AH . CD = AC . HB
b, như sai hay sao ý bạn
3, tứ giác BEDC là tứ giác nt đường tròn (O)
ta có \(\Delta'=\left(m-1\right)^2\ge0,\forall m\) nên phương trình có 2 nghiệm zới mọi m
theo định lý vi-et, ta có \(x_1+x_2=2m,x_1x_2=2m-1,\)suy ra \(P=\frac{4m+1}{4m^2+2}=1-\frac{\left(2m-1\right)^2}{4m^2+2}\le1.MaxP=1\)khi\(m=\frac{1}{2}\)
vì sai
1+1=2
thôi nhá
theo mn thấy 1+1=2 . ta thấy:
4+6-10=6+9-15
2.(2+3-5)=3.(2+3-5)
=> 2=3
=> 1+1=2=3