Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ \(3-4\sin^2=4\cos^2x-1\Leftrightarrow4\left(\sin^2x+\cos^2x\right)-4=0\Leftrightarrow4.1-4=0\left(ld\right)\Rightarrow dpcm\)
2/ \(\cos^4x-\sin^4x=\left(\cos^2x+\sin^2x\right)\left(\cos^2x-\sin^2x\right)=\cos^2x-\left(1-\cos^2x\right)=2\cos^2x-1=\left(1-\sin^2x\right)-\sin^2x=1-2\sin^2x\)
3/ \(\sin^4x+\cos^4x=\left(\sin^2x+\cos^2x\right)^2-2\sin^2x.\cos^2x=1-2\sin^2x.\cos^2x\)
Chứng minh bằng phản chứng :
Giả sử ngược lại, phương trình \(x^2=2\) có nghiệm \(x\in Q\) , tức là \(x=\frac{p}{q}\) (p,q \(\in Z,q\ne0\)) , \(\frac{p}{q}\) tối giản
Giải \(x^2=2\) được : \(x=\pm\sqrt{2}\)
Do đó: \(\sqrt{2}=\frac{p}{q}\) (Ta chỉ xét trường hợp \(x=\sqrt{2}\) , trường hợp \(x=-\sqrt{2}\) cũng tương tự)
Ta cần chứng minh \(\sqrt{2}\) không là số hữu tỉ.
Ta có : \(\sqrt{2}=\frac{p}{q}\Leftrightarrow p^2=2q^2\left(1\right)\Rightarrow p^2⋮2\Rightarrow p⋮2\) ( vì 2 là số nguyên tố)
Đặt \(p=2k\left(k\in Z\right)\Rightarrow p^2=4k^2\left(2\right)\)
Từ (1) và (2) \(\Rightarrow4k^2=2q^2\) nên \(q^2=2k^2\) (3)
Từ (3) lại có \(q^2⋮2\Rightarrow q⋮2\)
p và q cùng chia hết cho 2 nên phân số \(\frac{p}{q}\) không tối giản, trái với giả thiết.
Vậy \(\sqrt{2}\) không là số hữu tỉ, tức là \(x\notin Q\)
Sửa đề: ΔABC cân tại A
AB=AC
=>1/2AB=1/2AC
=>AN=AM
Xét ΔANC và ΔAMB có
AN=AM
góc NAC chung
AC=AB
=>ΔANC=ΔAMB
=>CN=BM
Giả sử m là đường thẳng song song với b và cắt qua a. Vì m song song với b mà b song song với a nên m cũng song song với a ( vô lí ) Vậy m không song song với b tức m cắt b
a: Vì F nằm trên đường trung trực của AB
nên FA=FB
b: Xét tứ giác AEFH có \(\widehat{AEF}=\widehat{AHF}=\widehat{EAH}=90^0\)
nên AEFH là hình chữ nhật
Suy ra: FE vuông góc với FH
c: Ta có: AEFH là hình chữ nhật
nên FH=AE