K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2021

1/ \(3-4\sin^2=4\cos^2x-1\Leftrightarrow4\left(\sin^2x+\cos^2x\right)-4=0\Leftrightarrow4.1-4=0\left(ld\right)\Rightarrow dpcm\)

2/ \(\cos^4x-\sin^4x=\left(\cos^2x+\sin^2x\right)\left(\cos^2x-\sin^2x\right)=\cos^2x-\left(1-\cos^2x\right)=2\cos^2x-1=\left(1-\sin^2x\right)-\sin^2x=1-2\sin^2x\)

3/ \(\sin^4x+\cos^4x=\left(\sin^2x+\cos^2x\right)^2-2\sin^2x.\cos^2x=1-2\sin^2x.\cos^2x\)

6 tháng 7 2016

Chứng minh bằng phản chứng :

Giả sử ngược lại, phương trình \(x^2=2\) có nghiệm \(x\in Q\) , tức là \(x=\frac{p}{q}\) (p,q \(\in Z,q\ne0\)) , \(\frac{p}{q}\) tối giản

Giải \(x^2=2\) được : \(x=\pm\sqrt{2}\)

Do đó: \(\sqrt{2}=\frac{p}{q}\) (Ta chỉ xét trường hợp \(x=\sqrt{2}\) , trường hợp \(x=-\sqrt{2}\) cũng tương tự)

Ta cần chứng minh \(\sqrt{2}\) không là số hữu tỉ.

Ta có : \(\sqrt{2}=\frac{p}{q}\Leftrightarrow p^2=2q^2\left(1\right)\Rightarrow p^2⋮2\Rightarrow p⋮2\) ( vì 2 là số nguyên tố)

Đặt \(p=2k\left(k\in Z\right)\Rightarrow p^2=4k^2\left(2\right)\)

Từ (1) và (2) \(\Rightarrow4k^2=2q^2\) nên \(q^2=2k^2\) (3)

Từ (3) lại có \(q^2⋮2\Rightarrow q⋮2\)

p và q cùng chia hết cho 2 nên phân số \(\frac{p}{q}\) không tối giản, trái với giả thiết.

Vậy \(\sqrt{2}\) không là số hữu tỉ, tức là \(x\notin Q\)

Sửa đề: ΔABC cân tại A

AB=AC

=>1/2AB=1/2AC

=>AN=AM

Xét ΔANC và ΔAMB có

AN=AM
góc NAC chung

AC=AB

=>ΔANC=ΔAMB

=>CN=BM

Giả sử m là đường thẳng song song với b và cắt qua a. Vì m song song với b mà b song song với a nên m cũng song song với a ( vô lí )  Vậy m không song song với b tức m cắt b

a: Vì F nằm trên đường trung trực của AB

nên FA=FB

b: Xét tứ giác AEFH có \(\widehat{AEF}=\widehat{AHF}=\widehat{EAH}=90^0\)

nên AEFH là hình chữ nhật

Suy ra: FE vuông góc với FH

c: Ta có: AEFH là hình chữ nhật

nên FH=AE

12 tháng 1 2021

Bạn đùa tôi à