K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2015

Lại sai đề nữa, (x+y)(x^2-xy+y^2)=(x+y)^3-3xy(x+y) thì còn được

22 tháng 9 2019
https://i.imgur.com/qYKcsE4.jpg
4 tháng 9 2020

a) Ta có: \(\left(x+y\right)\left(x+y\right)\left(x+y\right)-3xy\left(x+y\right)\)

\(=\left(x^2+2xy+y^2\right)\left(x+y\right)-3x^2y-3xy^2\)

\(=x^3+3x^2y+3xy^2+y^3-3x^2y-3xy^2\)

\(=x^3+y^3\)

b) Ta có: \(\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=x^3+y^3-x^3+y^3\)

\(=2y^3\) (ko phải HĐT đâu nhé bn, tại mk rút gọn luôn nên nó cg samesame thế:))

13 tháng 9 2020

                  Bài làm :

 \(\text{a) }\left(x+y\right)\left(x+y\right)\left(x+y\right)-3xy\left(x+y\right)\)

\(=\left(x^2+2xy+y^2\right)\left(x+y\right)-3x^2y-3xy^2\)

\(=x^3+3x^2y+3xy^2+y^3-3x^2y-3xy^2\)

\(=x^3+y^3\)

=> Điều phải chứng minh

\(\text{b) }\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=x^3+y^3-x^3+y^3\)

\(=2y^3\) 

=> Điều phải chứng minh

28 tháng 6 2017

Rút gọn phân thức

\(\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=x^3-x^2y+xy^2+x^2y-xy^2+y^3\)

\(=x^3-y^3=VT\left(đpcm\right)\)

\(\left(x+y\right)^3=\left(x+y\right)\left(x+y\right)\left(x+y\right)\)

\(=x^3+3x^2y+3xy^2+y^3\)

29 tháng 7 2016

dễ mà 

phần a) dưa vào kết quả tính ra rùi lm ngược lại

còn phần b)thì tách đầu bài thì ra kết quả

5 tháng 9 2020

Ta có :

\(VP=x^3+3x^2y+3xy^2+y^3-3x^2y-3xy^2\)

\(=x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=VT\)

\(\RightarrowĐPCM\)

5 tháng 9 2020

VT = x3 + y3 ( HĐT số 6 )

= x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2

= ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 )

= ( x + y )3 - 3xy( x + y ) = VP

=> đpcm

a: \(\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=x^3-x^2y+xy^2+x^2y-xy^2+y^3\)

\(=x^3+y^3\)

b: \(\left(x+y\right)^3=\left(x+y\right)\left(x+y\right)^2\)

\(=\left(x+y\right)\left(x^2+2xy+y^2\right)\)

\(=x^3+2x^2y+xy^2+2x^2y+2xy^2+y^3\)

\(=x^3+3x^2y+3xy^2+y^3\)

3 tháng 9 2021

a. Ta có \(\left(x+y\right)\left(x^2-xy+y^2\right)=x^3-x^2y+xy^2+x^2y-xy^2+y^3=x^3+y^3\)

\(\Rightarrow\left(x+y\right)\left(x^2-xy+y^2\right)=x^3+y^3\)

b. Ta có \(x^3+3x^2y+3xy^2+y^3=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\left(x+y\right)=\left(x+y\right)\left(x^2+2xy+y^2\right)=\left(x+y\right)\left(x+y\right)^2=\left(x+y\right)^3\)\(\Rightarrow\left(x+y\right)^3=x^3+3x^2y+3xy^2+y^3\)