K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2019

\(4x^2-4x+3\)

\(=\left(4x^2-4x+1\right)+2\)

\(=\left(2x+1\right)^2+2>0\)với mọi x

vậy \(4x^2-4x+3>0\)với mọi x

15 tháng 12 2019

\(4x^2-4x+3=4x^2-4x+1+2=\left(2x-1\right)^2+2\)

Vì \(\left(2x-1\right)^2\ge0\forall x\)\(\Rightarrow4x^2-4x+3\ge2\forall x\)

hay \(4x^2-4x+3>0\forall x\)

12 tháng 9 2016

talaays đơn thức nhân với từng hạng tử của đa thức

rồi cộng tích lại với nhau

rồi tìm x

nha bn

12 tháng 9 2016

bạn giải luôn giúp mình được không ạ?

1 tháng 1 2020

Ví dụ cho bạn một bài, còn lại tương tự.

a)Ta có: \(3x^4-5x^3+8x^2-5x+3\)

\(=3x^2\left(x-\frac{5}{6}\right)^2+\frac{71}{12}\left(x-\frac{30}{71}\right)^2+\frac{138}{71}>0\)

Vậy phương trình vô nghiệm.

1 tháng 1 2020

tth_new bạn làm hết ra đc ko. mình đọc không hiểu đc

14 tháng 2 2020

Ta có:

\(VT=\left(x^2+1\right)\left(x^2-x+1\right)\left(x^2-x+2\right)\)

\(pt\Leftrightarrow\left(x^2+1\right)\left(x^2-x+1\right)\left(x^2-x+2\right)=0\)

Mà:

\(x^2+1>0\)

\(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

\(x^2-x+2=\left(x-\frac{1}{2}\right)^2+\frac{7}{4}>0\)

Vậy pt vô nghiệm

14 tháng 2 2020

Trl

-Bạn kia  làm đúng r nhé !~ :>

Học tốt 

nhé bạn ~

15 tháng 7 2017

a,=(x\(^2\)-6x+9)+10-9

=(x-3)\(^2\)+1

Mà(x-3)\(^2\)\(\ge\)0

nên (x-3)\(^2\)+1>0

b,=  -(-4x+x\(^2\))-5

=    -(4-4x+x\(^2\))-5+4

=     -(2-x)\(^2\)-1

Mà  -(2-x)\(^2\)\(\le\)0

nên -(2-x)\(^2\)-1<   0

16 tháng 7 2017

Võ Hoàng Tiên: Cảm ơn pạn nhiều lắm =)) nek :3 Hí Hí :)  Thankssssss 

9 tháng 8 2020

giúp mình vs ạ

9 tháng 8 2020

a) \(\left(2x-3\right)^2-\left(2x+5\right)^2=10\)

\(\Leftrightarrow4x^2-12x+9-4x^2-20x-25-10=0\)

\(\Leftrightarrow-32x-26=0\)

\(\Leftrightarrow-32x=26\)

\(\Rightarrow x=-\frac{13}{16}\)

b) \(4\left(x+1\right)^2+\left(2x-1\right)^2+8\left(x-1\right)\left(x+1\right)=11\)

\(\Leftrightarrow4x^2+8x+4+4x^2-4x+1+8x^2-8=0\)

\(\Leftrightarrow16x^2+4x-3=0\)

\(\Leftrightarrow4\left(4x^2+x+\frac{1}{16}\right)-\frac{13}{4}=0\)

\(\Leftrightarrow\left[2\left(2x+\frac{1}{4}\right)\right]^2-\left(\frac{\sqrt{13}}{2}\right)^2=0\)

\(\Leftrightarrow\left(4x+\frac{1}{2}-\frac{\sqrt{13}}{2}\right)\left(4x+\frac{1}{2}+\frac{\sqrt{13}}{2}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}4x+\frac{1-\sqrt{13}}{2}=0\\4x+\frac{1+\sqrt{13}}{2}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{\sqrt{13}-1}{8}\\x=\frac{-1-\sqrt{13}}{8}\end{cases}}\)

c) \(\left(x+5\right)^2=45+x^2\)

\(\Leftrightarrow x^2+10x+25-x^2-45=0\)

\(\Leftrightarrow10x-20=0\)

\(\Leftrightarrow10x=20\)

\(\Rightarrow x=2\)

d) \(\left(2x-3\right)^2-\left(2x-1\right)^2=-3\)

\(\Leftrightarrow4x^2-12x+9-4x^2+4x-1+3=0\)

\(\Leftrightarrow-8x+11=0\)

\(\Leftrightarrow-8x=-11\)

\(\Rightarrow x=\frac{11}{8}\)

e) \(\left(x-1\right)^2-\left(5x-3\right)^2=0\)

\(\Leftrightarrow\left(x-1-5x+3\right)\left(x-1+5x-3\right)=0\)

\(\Leftrightarrow\left(-4x+2\right)\left(6x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}-4x+2=0\\6x-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{2}{3}\end{cases}}\)

8 tháng 5 2018

pt <=> x^4+x^3+x^2+x^2+x+1=0 
<=> x^4+x^2+x^3+x+x^2+1=0 
<=> x^2(x^2+1)+x(x^2+1)+(x^2+1)=0 
<=>(x^2+x+1)(x^2+1)=0 
<=> x^2+x+1=0 (Vô nghiệm) 
hoặc x^2+1=0 (vô lý) 
=>pt vô nghiệm

tk mk nhé

8 tháng 5 2018

b chép sai đề r híc-.-

6 tháng 7 2019

B2

( a3 + a2b + ab2 + b3 ).( a - b ) = a4 - b4

[( a3 + b3 + ab.( a + b )].( a - b ) = a4 - b4

[( a + b ).( a2 - ab + b2 ) + ab.( a + b )].( a - b ) = a4 - b4

 ( a + b ).( a2 - ab + b2 + ab ).( a - b ) = a4 - b4

( a + b ).( a2 + b2 ).( a  -  b ) = a4 - b4

 ( a2 - b2 ).( a2 + b2 ) = a4 - b4

 a4 - b4 = a4 - b4  ( đpcm )