Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}f\left(0\right)⋮5\Rightarrow c⋮5\\f\left(1\right)⋮5\Rightarrow\left(a+b+c\right)⋮5\\f\left(-1\right)⋮5\Rightarrow\left(a-b+c\right)⋮5\\\left[\left(a+b+c\right)+\left(a-b+c\right)\right]=2\left(a+c\right)⋮5\Rightarrow a⋮5\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}c⋮5\\a⋮5\\b⋮5\end{matrix}\right.\)+> dpcm
4x^4+y^4= 4x^4 +4x^2y^2+y^4-4x^2y^2= ( 2x^2 + y^2 ) ^2 - ( 2xy ) ^2
= (2x^2 + 2xy +y^2)( 2x^2 - 2xy + y^2)
\(A=x^4-6x^3+27x^2-54x+32\)
\(=x^4-5x^3+22x^2-32x-x^3+5x^2-22x+32\)
\(=x\left(x^3-5x^2+22x-32\right)-\left(x^3-5x^2+22x-32\right)\)
\(=\left(x-1\right)\left(x^3-5x^2+22x-32\right)\)
\(=\left(x-1\right)\left(x^3-3x^2+16x-2x^2+6x-32\right)\)
\(=\left(x-1\right)\left[x\left(x^2-3x+16\right)-2\left(x^2-3x+16\right)\right]\)
\(=\left(x-1\right)\left(x-2\right)\left(x^2-3x+16\right)\)
Vì \(x\in Z\)=> x-1;x-2 là 2 số nguyên liên tiếp => \(\left(x-1\right)\left(x-2\right)⋮2\)
\(\Rightarrow A=\left(x-1\right)\left(x-2\right)\left(x^2-3x+16\right)⋮2\) hay A là số chẵn (đpcm)
\(A=x^4-6x^3+27x^2-54x+32\)
\(=x^4-x^3-5x^3+5x^2+22x^2-22x-32x+32\)
\(=\left(x-1\right)\left(x^3-5x^2+22x-32\right)\)
\(=\left(x-1\right)\left[x^2\left(x-2\right)-3x\left(x-2\right)+16\left(x-2\right)\right]\)
\(=\left(x-1\right)\left(x-2\right)\left(x^2-3x+16\right)\)
Vì \(\left(x-1\right)\left(x-2\right)⋮2\) nên A là số chẵn với mọi x thuộc Z
Bạn tham khảo link này nhé :
https://olm.vn/hoi-dap/detail/11579055142.html
~Study well~
#SJ
\(a,\)\(x^{16}-1\)
\(=\left(x^8+1\right)\left(x^8-1\right)\)
\(=\left(x^8+1\right)\left(x^4+1\right)\left(x^4-1\right)\)
\(=\left(x^8+1\right)\left(x^4+1\right)\left(x^2+1\right)\left(x^2-1\right)\)
\(=\left(x^8+1\right)\left(x^4+1\right)\left(x^2+1\right)\left(x+1\right)\left(x-1\right)\)
dễ ợt
a. x^36 - 64 = (x^18)^2 - 8^2 rồi áp dụng hằng đẳng thức số 3 . câu b tương tự
thì 2 câu trên cho dễ vậy để mọi người chú ý
chứ quan trọng là 2 câu cuối kia kìa
a , \(-q^3+12q^2x-48qx^2+64x^3\)
\(=-\left(q^3-12q^2x+48qx^2-64x^3\right)\)
\(=\)\(-\left(q-4x\right)^3\)
b , x2 + 2xy - y2 - 9
= - ( x2 - 2xy + y2 ) - 9
= - ( x - y )2 - 9
= ( - x + y - 3 ) ( x - y + 3 )
3 , 1 - m2 + 2mn - n2
= 1 - ( m2 - 2mn + n2 )
= 1 - ( m - n )2
= ( 1 - m + n ) ( 1 + m - n )
4 , x3 - 8 + 6a2 - 12a
= x3 + 6a2 - 12a + 8
= x3 + 6a2 - 12a + 4 + 4
= x3 + ( 6a2 - 12a + 4 ) + 4
= x3 + ( 3a - 2 )2 + 4
= ( x + 3a - 2 + 2 ) ( x2 + 3a + 2 + 2 )
( Mai làm tiếp mấy ý sau '-' muộn rồi ~ )
5 , x2 - 2xy + y2 - xz - yz
= ( x2 - 2xy + y2 ) - ( xz + yz )
= ( x - y )2 - z ( x + y )
= ( x - y ) 2 - z ( x - y )
= ( x - y ) ( x - y - z )
6 , x2 - 4xy + 4y 2 - z2 + 4z - 4t2
=( x2 - 4xy + 4y 2 ) - (z2 - 4z +4 ) . t2
= ( x - y )2 - ( z - 2 )2 . t2
= ( x - y - z - 2 ) ( x - y + z - 2 ) t2
7 , 25 - 4x2 - 4xy - y2
= 25 + ( - 4x2 - 4xy + y2 )
= 25 + ( 2x - y )2
= ( 5 + 2x - y ) ( 5 + 2x + y )
8 ,
x3 + y3 + z3 - 3xyz
= (x+y)3 - 3xy (x - y ) + z3 - 3xyz
= [ ( x + y)3 + z3 ] - 3xy ( x + y + z )
= ( x + y + z )3 - 3z ( x + y )( x + y + z ) - 3xy ( x - y - z )
= ( x + y + z )[( x + y + z )2 - 3z ( x + y ) - 3xy ]
= ( x + y + z )( x2 + y2 + z2 + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy)
= ( x + y + z)(x2 + y2 + z2 - xy - xz - yz)
Mạnh dạn đưa pt 1 ẩn về 2 ẩn :)
Đặt \(\frac{x+3}{x-2}=u;\frac{x-3}{x+2}=v\)
Ta có:
\(u^2+6v=7uv\)
\(\Leftrightarrow\left(u-v\right)\left(u-6v\right)=0\)
Xét nốt nha!
Câu b là phân tích các kiểu ra dạng như thế này nhé !
\(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
Hoặc là bạn dựa vào đó mà phân tích đến cái A là Ok
\(x^3-5x^2-14x\)
\(=x^3+2x^2-7x^2-14x\)
\(=x^2\left(x+2\right)-7x\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2-7x\right)\)
\(=x\left(x+2\right)\left(x-7\right)\)
\(x^3-7x-6\)
\(=x^3+x^2-x^2-x-6x-6\)
\(=x^2\left(x+1\right)-x\left(x+1\right)-6\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x-6\right)\)
\(=\left(x+1\right)\left(x^2+2x-3x-6\right)\)
\(=\left(x+1\right)\left[x\left(x+2\right)-3\left(x+2\right)\right]\)
\(=\left(x+1\right)\left(x+2\right)\left(x-3\right)\)
\(x^3-19x-30\)
\(=x^3-5x^2+5x^2-25x+6x-30\)
\(=x^2\left(x-5\right)+5x\left(x-5\right)+6\left(x-5\right)\)
\(=\left(x-5\right)\left(x^2+5x+6\right)\)
\(=\left(x-5\right)\left(x^2+2x+3x+6\right)\)
\(=\left(x-5\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)
\(=\left(x-5\right)\left(x+3\right)\left(x+2\right)\)
\(x^3-x=x.\left(x^2-1\right)=x.\left(x^2-1^2\right)=x.\left[\left(x-1\right)\left(x+1\right)\right]=x.\left(x-1\right)\left(x+1\right)\)
Vì (x - 1) ; x ; (x + 1) là 3 số nguyên liên tiếp
Nên luôn tồn tại một số chia hết cho 3 trong 3 số bất kỳ này
Mặt khác , cũng có số chia hết cho 2 vì :
Thử xét x lẻ thì :
+ (x - 1) là dương , x là lẻ => (x - 1).x chẵn
+ (x + 1) là dương , x là lẻ => (x + 1).x chẵn
Ta cũng xét vậy với x chẵn
Từ các ý trên , ta có :
\(\left(x-1\right).x.\left(x+1\right)⋮3\)
\(\left(x-1\right).x.\left(x+1\right)⋮2\)
\(\Rightarrow\left(x-1\right).x.\left(x+1\right)⋮6\) (điều cần chứng minh)
\(x3-x=x\left(x^2-1\right)\)=\(x\left(x-1\right)\left(x+1\right)\)là tích của 3 số nguyên liên tiếp nên chia hết cho 2,3 suy ra chia hết cho 6 (dpcm)