K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2015

\(-x^2+x-5\)

=\(-x^2+1.x-2^2+1\)

=\(x.\left(x-2\right)+2\left(x-2\right)+1\)

=\(\left(x-2\right)^2+1\ge1\ne0\)

Vậy đa thức trên vô nghiệm.

4 tháng 4 2022

Ta có: 

\(\left(x-4\right)^2\ge0\)

\(\left(x+5\right)^2\ge0\)

\(\Rightarrow\left(x-4\right)^2+\left(x+5\right)^2=0\) khi

\(\left\{{}\begin{matrix}\left(x-4\right)^2=0\\\left(x+5\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-4=0\\x+5=0\end{matrix}\right.\) => không có giá trị x nào thỏa mãn

=> đa thức vô nghiệm

4 tháng 4 2022

good job

tks you nhó 

3 tháng 8 2016

Nếu đa thức trên có nghiệm là n

<=>(n-4)2+(n+5)2=0

<=>(n-4)2=0 và (n+5)2=0

<=>n-4=0 và n+5=0

<=>n=4 và n=-5 (vô lý)

Vậy đa thức trên vô nghiệm

24 tháng 6 2020

Ta có : \(P\left(x\right)=0< =>x^2+3x+5=0\)

Lại có : \(\Delta=3^2-4.5=9-20=-11\)

Vì delta < 0 nên đa thức trên vô nghiệm 

24 tháng 6 2020

p(x) = x^2 + 3x + 5

= x^2 + 2.3/2.x + 9/4 + 2.75

= (x + 3/2)^2 + 2.75

có (x + 3/2)^2 > 0

=> p(x) > 2.75

=> vô nghiệm

11 tháng 5 2016

D(x) = x2- 4x +4 +1 = (x-2)2 +1 >0

vậy D(x) vô nghiệm

11 tháng 5 2016

Dùng hằng thức (a-b)2=a2-2ab+b2 ta có

D(x)= X2-4x+5=x2-2x2+22+1

                     =(x-2)2+1

Vì (x-2)2>-1 suy ra (x-2)2+1>0

Vậy đa thức D(x)=x2-4x+5 không có nghiệm

17 tháng 4 2015

ta có : p(x) = 0 

x^3 - x+ 5 = 0

x^3 - x =-5

mà x^3 khác -5

=> vô nghiệm

gọi 3.x4+55.x-2 = M(x)

3.x4+55.x-2=> x.(3.x3+55)-2

TH1: x=0                            TH2: x>0                            TH3: x<0

=> M(x)= 0                         => M(x)>0                          => M(x)<0

vậy M(x) vô nghiệm

 

7 tháng 7 2020

Bài làm:

Ta có: \(x^2-x-6=0\)

\(\Leftrightarrow\left(x^2-x+\frac{1}{4}\right)-\frac{25}{4}=0\)

\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2=\left(\frac{5}{2}\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}x-\frac{1}{2}=\frac{5}{2}\\x-\frac{1}{2}=-\frac{5}{2}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)

=> Mâu thuẫn với đề bài

=> điều giả sử sai

=> Phương trình có 2 nghiệm x=3 và x=-2

\(x^2-x-6=0\)

Vì \(\left(-1\right)^2-4.\left(-6\right)=1+24>0\)

Nên pt có 2 nghiệm phân biệt :

\(x_1=\frac{-1-5}{2}=-3;x_2=\frac{-1+5}{2}=2\)

=> ko thể CM pt vô nghiệm 

14 tháng 5 2015

x2 + x + 1 = x2 + \(\frac{1}{2}\). x+ \(\frac{1}{2}\).x + \(\frac{1}{4}\)\(\frac{3}{4}\) = (x2 + \(\frac{1}{2}\). x) +( \(\frac{1}{2}\).x + \(\frac{1}{4}\)) + \(\frac{3}{4}\) = x.(x + \(\frac{1}{2}\) ) + \(\frac{1}{2}\).(x + \(\frac{1}{2}\)) + \(\frac{3}{4}\)

= (x + \(\frac{1}{2}\) ). (x + \(\frac{1}{2}\) ) + \(\frac{3}{4}\) = (x + \(\frac{1}{2}\))2  + \(\frac{3}{4}\) \(\ge\) 0 + \(\frac{3}{4}\)\(\frac{3}{4}\) với mọi x

=> x2 + x + 1 = 0 không có nghiệm