
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\frac{4}{9}x^2-4x+5=\frac{4}{9}x^2-2\cdot\frac{2}{3}x\cdot3+3^2-4=\left(\frac{2}{3}x-3\right)^2-4\)
\(\left(\frac{2}{3}x-3\right)^2\ge0\forall x\Rightarrow\left(\frac{2}{3}x-3\right)^2-4\ge-4\)
Đến chỗ này bạn xem lại đề nhé ;-; Luôn dương đâu -.-

Ta có : 9x2 - 6x + 5
= (3x)2 - 6x + 1 + 4
= (3x - 1)2 + 4
Mà : (3x - 1)2 \(\ge0\forall x\)
Nên : (3x - 1)2 + 4 \(\ge4\forall x\)
Suy ra : (3x - 1)2 + 4 \(>0\forall x\)
Vậy biểu thức sau luôn luôn dương

Phạm Hữu Nam chuyên Đại số ♏ (Hội Con 🐄) Thử với x=y=1 thì nó đâu phải dương ??

\(A=x\left(x-6\right)+10=x^2-6x+10\)
\(=\left(x-3\right)^2+1>0\) với mọi x
\(B=x^2-2x+9y^2-6y+3=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)
\(=\left(x-1\right)^2+\left(3y-1\right)^2+1>0\) với mọi x;y

A = x(x - 6) + 10
A = x2 - 6x + 10
A = x2 - 2.3.x + 32 + 1
A = (x - 3)2 + 1 \(\ge1\)
=> A luôn dương
Bạn Kurosaki Akatsu làm ý a đúng rồi đấy!
B = x2 - 2x + 9y2 - 6y + 3
= (x2 - 2x + 1) + (9y2 - 6y + 1) + 1
= (x - 1)2 + [ (3y)2 - 2.3y.1 + 12)] + 1
= (x - 1)2 + (3y - 1)2 + 1
Vì (x - 1)2 và (3y - 1)2 luôn lớn hơn hoặc bằng 0 với mọi x, y
=> (x - 1)2 + (3y - 1)2 + 1 > 0 với mọi xy
Vậy biểu thức luôn dương

a/ \(x^2-5x+11=x^2-2.\frac{5}{2}.x+\left(\frac{5}{2}\right)^2-\left(\frac{5}{2}\right)^2+11=\left(x-\frac{5}{2}\right)^2+\frac{19}{4}>0\)
Vậy luôn dương
b/ \(3x^2+5x+9=3\left(x^2+\frac{5}{3}x+3\right)=3\left[x^2+2.\frac{5}{6}.x+\left(\frac{5}{6}\right)^2-\left(\frac{5}{6}\right)^2+3\right]\)
\(=3\left[\left(x+\frac{5}{6}\right)^2+\frac{83}{36}\right]=3\left(x+\frac{5}{6}\right)^2+\frac{83}{12}>0\)
Vậy luôn dương

\(x^2+x+1=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)( luôn dương ) (1 )
\(x^2-x+1=x^2-2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)( luôn dương ) ( 2 )
Từ ( 1 ) và ( 2 ) => \(\frac{x^2+x+1}{x^2-x+1}\ge\frac{3}{4}:\frac{3}{4}\ge1\)( luôn dương ) ( đpcm )
\(\frac{x^2+x+1}{x^2-x+1}\)
=\(\frac{x^2+2.\frac{1}{2}.x+\frac{1}{4}-\frac{1}{4}+1}{x^2-2.\frac{1}{2}.x+\frac{1}{4}-\frac{1}{4}+1}\)
=\(\frac{\left(x+1\right)^2+\frac{3}{4}}{\left(x-1\right)^2+\frac{3}{4}}\)vì tử số và mẫu số luôn dương => với mọi x luôn dương

\(B=x^2-2\cdot x\cdot\dfrac{1}{2}y+\dfrac{1}{4}y^2+\dfrac{3}{4}y^2=\left(x-\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2>0\forall x,y\)
\(x^2+2,5x+5\)
\(=x^2+2\cdot x\cdot\dfrac{5}{4}+\dfrac{25}{16}+\dfrac{55}{16}\)
\(=\left(x+\dfrac{5}{4}\right)^2+\dfrac{55}{16}>=\dfrac{55}{16}>0\forall x\)
=>ĐPCM