Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}\left|x\right|\ge3\\\left|y\right|\ge3\\\left|z\right|\ge3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|\dfrac{1}{x}\right|\le\dfrac{1}{3}\\\left|\dfrac{1}{y}\right|\le\dfrac{1}{3}\\\left|\dfrac{1}{z}\right|\le\dfrac{1}{3}\end{matrix}\right.\)
\(\left|A\right|=\left|\dfrac{xy+yz+xz}{xyz}\right|=\left|\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right|\le\left|\dfrac{1}{x}\right|+\left|\dfrac{1}{y}\right|+\left|\dfrac{1}{z}\right|\le\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{3}=1\)
\(\Rightarrow A\le\left|A\right|\le1\) (đpcm)
Dấu "=" xảy ra khi \(x=y=z=3\)
Áp dùng BĐT Cosi ta có:
\(\frac{x^3}{yz}+y+z\ge3\sqrt[3]{\frac{x^3}{yz}\cdot y\cdot z}=3x\)
\(\frac{y^3}{xz}+z+x\ge3\sqrt[3]{\frac{z^3}{zx}\cdot z\cdot x}=3y\)
\(\frac{z^3}{yx}+x+y\ge3\sqrt[3]{\frac{z^3}{xy}\cdot x\cdot y}=3z\)
\(\Rightarrow\frac{x^3}{xy}+y+z+\frac{y^3}{zx}+x+z+\frac{z^3}{xy}+x+y\ge3x+3y+3z\)
\(\Rightarrow\frac{x^3}{yz}+\frac{y^3}{xz}+\frac{z^3}{xy}\ge3\left(x+y+z\right)-2\left(x+y+z\right)\)\(=x+y+z\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{x^3}{yz}=y=z\\\frac{y^3}{zx}=x=z\\\frac{z^3}{yz}=y=x\end{cases}\Rightarrow x=y=z}\)
Áp dụng bđt Cauchy-Schwarz và AM-GM:
\(x^4+y^4+z^4\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{3}\ge\dfrac{\left(xy+yz+xz\right)^2}{3}=\dfrac{1}{3}\)
Ta chứng minh được
\(a^2+b^2+c^2\) ≥\(\dfrac{\left(a+b+c\right)^2}{3}\)
A=\(x^4+y^4+z^4\) ≥ \(x^2y^2+y^2z^2+z^2x^2\) ≥ \(\dfrac{\left(xy+yz+zx\right)^2}{3}=\dfrac{1}{3}\)
=>\(x^4+y^4+z^4\) ≥ \(\dfrac{1}{3}\left(đpcm\right)\)
Chúc Bạn Học Tốt
Ta có: \(x-y+z=0\)
\(\Rightarrow\left(x-y+z\right)^2=0
\)
\(\Rightarrow\left(x-y+z\right).\left(x-y+z\right)=0\)
\(\Rightarrow x\left(x-y+z\right)-y\left(x-y+z\right)+z\left(x-y+z\right)=0\)
\(\Rightarrow x^2-xy+xz-xy+y^2-yz+xz-yz+z^2=0\)
\(\Rightarrow x^2+y^2+z^2=xy+xy+yz+yz-xz-xz\)
\(\Rightarrow x^2+y^2+z^2=2xy+2yz-2xz\)
\(\Rightarrow x^2+y^2-z^2=2\left(xy+yz-xz\right)\)
Mà: \(x^2+y^2-z^2\ge0\)
\(\Rightarrow2\left(xy+yz-xz\right)\ge0\)
\(\Rightarrow xy+yz-xz\ge0\)(đpcm)
Vậy: \(xy+yz-xz\ge0\)
Lời giải:
Do $x-y+z=0\Rightarrow y=x+z$
Khi đó:
$xy+yz-xz=y(x+z)-xz=(x+z)(x+z)-xz=x^2+xz+z^2$
$=(x^2+xz+\frac{z^2}{4})+\frac{3}{4}z^2=(x+\frac{z}{2})^2+\frac{3}{4}z^2\geq 0$ với mọi $x,y,z$
Ta có đpcm.
Do lỗi chữ TeX nên mình sửa lại ở đây nhé: cái biểu thức A ở trên nó là \(\frac{xy+yz+zx}{xyz}\le1\) nhé.