Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\text{ }x^4+y^4\ge x^3y+xy^3\)
\(\Leftrightarrow x^4+y^4-x^3y-xy^3\ge0\)
\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)(ĐPCM)
*NOTE: chứng minh đc vì (x-y)^2 >= 0 ; x^2 +xy +y^2 > 0
mình cũng làm đến nơi rồi nhưng sợ x^2+xy+y^2 chưa chắc lớn hơn 0 thanks bạn nhé
Bài 2:
\(a^4+b^4\ge a^3b+b^3a\)
\(\Leftrightarrow a^4-a^3b+b^4-b^3a\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)
ta thấy : \(\orbr{\orbr{\begin{cases}\left(a-b\right)^2\ge0\\\left(a^2+ab+b^2\right)\ge0\end{cases}}}\Leftrightarrow dpcm\)
Dấu " = " xảy ra khi a = b
tk nka !!!! mk cố giải mấy bài nữa !11
a: Thiếu vế phải rồi bạn
b: \(\Leftrightarrow\dfrac{x+y}{xy}>=\dfrac{4}{x+y}\)
\(\Leftrightarrow\left(x+y\right)^2>=4xy\)
\(\Leftrightarrow\left(x-y\right)^2>=0\)(luôn đúng)
\(A=\frac{x^2-x+1}{x^2+x+1}=\frac{3x^2-3x+3}{3\left(x^2+x+1\right)}=\frac{x^2+x+1+2x^2-4x+2}{3\left(x^2+x+1\right)}=\frac{1}{3}+\frac{2\left(x-1\right)^2}{3\left(x^2+x+1\right)}\)
Do \(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0\\x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\end{matrix}\right.\) \(\forall x\Rightarrow\frac{2\left(x-1\right)^2}{3\left(x^2+x+1\right)}\ge0\) \(\forall x\)
\(\Rightarrow A\ge\frac{1}{3}\) \(\forall x\)
Dấu "=" xảy ra khi \(x=1\)
1) \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)\(\Leftrightarrow\)\(2x^2+2y^2\ge x^2+2xy+y^2\)\(\Leftrightarrow\)\(\left(x-y\right)^2\ge0\) ( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)
2) \(\frac{1}{xy}=\frac{1}{\left(\sqrt{xy}\right)^2}\ge\frac{1}{\left(\frac{x+y}{2}\right)^2}=4\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=\frac{1}{2}\)
bạn Diệu Linh ơi, bài này bảo chứng minh điều đó là đúng chứ không bảo điều đó là giả thiết nhé bạn, nhưng cũng cảm ơn bạn vì đã giúp mình =))
ta thay\(\left(x-\frac{1}{x}\right)^2\ge\)0 (voi moi x)
=>x+\(\frac{1}{x}\) \(\ge\)2 (phan h hang dang thuc trong dau ngoac)
con lai ban tu lam nha
áp dụng BDT cô si ta co x + 1/x >= 2