K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2018

I don't now

...............

.................

.

23 tháng 7 2018

haizzzzzzzzzzzzz

28 tháng 5 2017

ta có 3x + yz = x2 + xy + yz + zx = (x+y)(x+z)

do đó:

\(\frac{x}{x+\sqrt{3x+yz}}=\frac{x\left(\sqrt{x^2+xy+yz+zx}-x\right)}{\left(\sqrt{x^2+xy+yz+zx}+x\right)\left(\sqrt{x^2+xy+yz+zx}-x\right)}\)

\(\frac{x\left(\sqrt{\left(x+y\right)\left(x+z\right)}-x\right)}{xy+yz+zx}\le\frac{x\left(\frac{x+y+x+z}{2}-x\right)}{xy+yz+zx}\)\(\le\frac{x\left(y+z\right)}{2\left(xy+yz+zx\right)}\)

tương tự với 2 số hạng còn lại nên ta được: P\(\le\)1. đpcm

15 tháng 5 2020

hi minh ket ban nhe

28 tháng 1 2017

\(I\)\(Don't\)\(know\)

30 tháng 1 2017

Áp dụng BĐT Cauchy-Schwarz ta có: VT\le \sqrt{3\sum \frac{x}{z+3x}}

Ta cần chứng minh \sum \frac{x}{z+3x} \leq \frac{3}{4}

\leftrightarrow \sum \frac{3x}{z+3x} \leq \frac{9}{4}

\leftrightarrow \sum(1-\frac{3x}{z+3x}) \geq \frac{3}{4}

\leftrightarrow \sum \frac{z}{z+3x} \geq \frac{3}{4}

Áp dụng BĐT Cauchy-Schwarz ta có: 

\sum \frac{z}{z+3x}=\sum \frac{z^2}{z^2+3xz} \geq \frac{(x+y+z)^2}{x^2+y^2+z^2+3(xy+yz+zx)}=\frac{(x+y+z)^2}{(x+y+z)^2+xy+yz+zx} \geq \frac{(x+y+z)^2}{(x+y+z)^2+\frac{(x+y+z)^2}{3}}=\frac{3}{4}

Dấu "=" xảy ra khi x=y=z

P/s:OLM chặn paste r` mà có vài công thức OLM ko có nên mk ko paste dc đành gõ = latex thông cảm, trách thì trách OLM, ko hiểu dc thì bảo Ad dịch hộ


 

29 tháng 6 2016

Áp dụng B.C.S ta có:

\(\frac{x}{x+\sqrt{3x+yz}}=\frac{x}{x+\sqrt{\left(x+y\right)\left(x+z\right)}}\)

\(\le\frac{x}{x+\sqrt{xy}+\sqrt{xz}}=\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

Tương tự cộng lại ta có dpcm.

Dấu = khi x=y=z=1

29 tháng 6 2016

chờ lát tui làm cho

16 tháng 3 2018

Đề bài thiếu điều kiện rồi :")))

thêm điều kiện đi rồi giải cho

28 tháng 3 2018

x+y+z=3

5 tháng 2 2016

(*) Xét BĐT \(\sqrt{\left(a+b\right)\left(c+d\right)}\ge\sqrt{ac}+\sqrt{bd}\) với a ; b; c ;d > 0 

BĐT <=> \(\left(a+b\right)\left(c+d\right)\ge ac+bd+2\sqrt{abcd}\)

  <=> \(ad-2\sqrt{abcd}+bc\ge0\Leftrightarrow\left(\sqrt{ad}-\sqrt{bc}\right)^2\ge0\)

Dễ thấy BĐT cuối luôn đúng 

Dấu '' = '' của BĐT xảy ra khi ad = bc <=> \(\frac{a}{c}=\frac{b}{d}\)

(*) ÁP dụng BĐT ta có 

\(\sqrt{3x+yz}=\sqrt{\left(x+y+z\right)x+yz}=\sqrt{\left(x+z\right)\left(y+x\right)}\ge\sqrt{xy}+\sqrt{xz}\)

=> \(\frac{x}{x+\sqrt{3x+yz}}\le\frac{x}{x+\sqrt{xy}+\sqrt{xz}}=\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

Dấu '' = '' của BĐT xảy ra khi x/y = z/x 

(*) CMTT với hai cái còn lại 

Cộng Ba vế BĐT ta đc ĐPCM 

Dấu '' = '' của BĐT xảy ra khi x = y = z = 1  

NV
15 tháng 4 2019

\(VT=\sum\frac{x}{x+\sqrt{\left(xy+xz+yz\right)x+yz}}=\sum\frac{x}{x+\sqrt{\left(x+y\right)\left(x+z\right)}}=\sum\frac{x}{x+\sqrt{\left(\sqrt{x}^2+\sqrt{y}^2\right)\left(\sqrt{z}^2+\sqrt{x}^2\right)}}\)

\(\Rightarrow VT\le\sum\frac{x}{x+\sqrt{\left(\sqrt{xz}+\sqrt{yz}\right)^2}}=\sum\frac{x}{x+\sqrt{xz}+\sqrt{yz}}=\sum\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=1\)

26 tháng 4 2021

Áp dụng bđt phụ \(\sqrt{ \left(a+b\right)\left(c+d\right)}\ge\sqrt{ac}+\sqrt{bd}\)có 

\(VT=\frac{x}{x+\sqrt{\left(x+y\right)\left(z+x\right)}}+\frac{y}{y+\sqrt{\left(y+x\right)\left(z+y\right)}}+\frac{z}{z+\sqrt{\left(z+x\right)\left(y+z\right)}}\)

\(\le\frac{x}{x+\sqrt{xz}+\sqrt{xy}}+\frac{y}{y+\sqrt{yz}+\sqrt{yx}}+\frac{z}{z+\sqrt{zx}+\sqrt{zy}}\)

\(=\frac{x}{\sqrt{x}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}+\frac{y}{\sqrt{y}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}+\frac{z}{\sqrt{z}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}\)

\(=\frac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)

26 tháng 4 2021

bạn sửa lại đề đi ạ

1 tháng 3 2016

em chua hoc em moi hoc lop 6 thoi

1 tháng 3 2016

toán lớp 9 khó wá

29 tháng 7 2019

Ta có \(\sqrt{3x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x+z\right)\left(x+y\right)}\ge\sqrt{xy}+\sqrt{xz}\)(BĐT buniacoxki)

=>\(VT\le\frac{x}{x+\sqrt{xz}+\sqrt{xy}}+\frac{y}{y+\sqrt{yx}+\sqrt{yz}}+\frac{z}{z+\sqrt{zx}+\sqrt{yz}}\)

=> \(VT\le\frac{\sqrt[]{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+\frac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+\frac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)(ĐPCM)

Dấu bằng xảy ra khi a=b=c=1