Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)
\(A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right).n}\)
\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{2}+...+\frac{1}{\left(n-1\right)}-\frac{1}{n}\)
\(A< 1-\frac{1}{n}< 1-\frac{1}{2}=\frac{1}{2}< \frac{2}{3}\)
đpcm
Giả sử n=1
1x2x3x4=24
mà 24 ko là số chính phương
=>A = n(n+1)(n+2)(n+3) ko là số chính phương với mọi số m khác 0
Ta có :
n3 + n + 2 = ( n3 + 1 ) + ( n + 1 )
= ( n + 1 ) ( n2 - n + 1 ) + ( n + 1 )
= ( n + 1 ) ( n2 - n + 2 )
Ta thấy n + 1 > 1 ; n2 - n + 2 > 1 nên n3 + n + 2 là hợp số
Do n là số tự nhiên khác 0 =) n = 2k hoặc 2k + 1 với k là stn
(+) Nếu n = 2k =) n^3 + n + 2 = (2k)^3 + 2k + 2 chia hết cho 2 (1)
(+) Nếu n = 2k + 1 =) n^3 + n + 2 = lẻ + lẻ +chẵn = chẵn chia hết cho 2 (2)
Từ (1) và (2) ta có điều phải chứng minh
Ta có :
A=n(n+1)(n+2)(n+3)
=n(n+3).(n+1)(n+2)
=(n2+3n)(n2+3n+2)
=(n2+3n)2+2(n2+3n)⇒A>(n2+3n)2
=[(n2+3n)2+2(n2+3n)+1]−1
=(n2+3n+1)2−1
Có :
(n2+3n+1)2>A>(n2+3n)2 nên A không phải số chính phương ( Vì A nằm giữa hai số chính phương )
=n(n+3).(n+1)(n+2)
=(n2+3n)(n2+3n+2)
=(n2+3n)2+2(n2+3n)⇒A>(n2+3n)2
=[(n2+3n)2+2(n2+3n)+1]−1
=(n2+3n+1)2−1
Có :
Đề không đẩy đủ? Bạn muốn chứng minh gì nhỉ?