Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(d=\left(n^3+2n;n^4+3n^2+1\right)\)
\(\Rightarrow\hept{\begin{cases}\left(n^3+2n\right)⋮d\\\left(n^4+3n^2+1\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}n\left(n^3+2n\right)=\left(n^4+2n^2\right)⋮d\\\left(n^4+3n^2+1\right)⋮d\end{cases}}\)
\(\Rightarrow\left(n^4+3n^2+1\right)-\left(n^4+2n^2\right)⋮d\)
\(\Leftrightarrow n^2+1⋮d\Leftrightarrow\left(n^2+1\right)^2⋮d\)
\(\Rightarrow\left(n^2+1\right)^2-\left(n^4+2n^2\right)⋮d\Leftrightarrow1⋮d\Rightarrow d=1\)
=> P/s tối giản
Gọi \(d=ƯCLN\left(n^3+2n;n^4+3n^2+1\right);\left(d>0\right)\)
\(\Rightarrow\hept{\begin{cases}n^3+2n⋮d\left(1\right)\\n^4+3n^2+1⋮d\end{cases}}\)
Từ \(\left(1\right)\): \(\Rightarrow n\left(n^3+2n\right)⋮d\)
\(\Rightarrow n^4+2n^2⋮d\)
\(\Rightarrow\left(n^4+3n^2+1\right)-\left(n^4+2n^2\right)⋮d\)
\(\Rightarrow n^2+1⋮d\)
\(\Rightarrow\left(n^2+1\right)^2⋮d\)
\(\Rightarrow n^4+2n^2+1⋮d\)
\(\Rightarrow1⋮d\)(do \(n^4+2n^2⋮d\))
Vì \(d>0\)\(\Rightarrow d=1\)
\(\Rightarrow\left(n^3+2n;n^4+3n^2+1\right)=1\)
\(\Rightarrow\frac{n^3+2n}{n^4+3n^2+1}\)là phân số tối tối giản với mọi n nguyên
Gọi d là ƯC(n3+2n;n4+3n2+1)
n3+2n chia hết d;n4+3n2+1 chia hết d
n(n3+2n) chia hết d ; n4+3n2+1 chia hết d
n4+2n2 chia hết d; n4+3n2+1 chia hết d
(n4+3n2+1) - (n4+2n2) chia hết d
n2+1 chia hết d
n(n2+1) chia hết d
n3+n chia hết d
(n3+2n)-(n3+n) chia hết d
n chia hết d
n2 chia hết d
(n2+1)-(n2) chia hết cho d
1 chia hết d
d=1
PS tối giản
Gọi d là ước chung của \(n^3+2n\) và \(n^4+3n^2+1\) . ta có :
+) \(n^3+2n⋮d\)
\(\Rightarrow n\left(n^3+2n\right)⋮d\)
\(\Rightarrow n^4+2n^2⋮d\) (1)
Và \(n^4+3n^2+1-\left(n^4+2n^2\right)=n^2+1⋮d\)
\(\Rightarrow\left(n^2+1\right)^2=n^4+2n^2+1⋮d\) (2)
Từ (1) và (2)
\(\Rightarrow\left(n^4+2n^2+1\right)-\left(n^4+2n\right)^2⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=\pm1\)
Vậy \(\frac{n^3+2n}{n^4+3n^2+1}\) là phân số tối giản (đpcm)
Chứng minh rằng với mọi số tự nhiên n thì phân số \(\frac{n^3+2n}{n^4+3n^2+1}\) là phân số tối giản.
Giả sử ƯCLN(n3 + 2n ; n4 + 3n2 + 1) = d
Ta có: \(\hept{\begin{cases}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{cases}}\)
Do \(n^3+2n⋮d\Rightarrow n\left(n^3+2n\right)⋮d\)
\(\Rightarrow n^4+2n^2⋮3\)
Vậy thì \(n^4+3n^2+1-n^4-2n^2=n^2+1⋮d\) (1)
Lại có \(n^3+2n=n\left(n^2+1\right)+n⋮d\) nên \(n⋮d\Rightarrow n^2⋮d\) (2)
Từ (1) và (2) suy ra \(1⋮d\Rightarrow d=1\)
Vậy thì ƯCLN(n3 + 2n ; n4 + 3n2 + 1) = 1 hay phân số \(\frac{n^3+2n}{n^4+3n^2+1}\) là phân số tối giản.
Gọi d là ước chung của n^3 + 2n và n^4 + 3n^2 + 1. Ta có:
n^3 + 2n chia hết cho d => n(n^3 + 2n) chia hết cho d => n^4 + 2n^2 chia hết cho d (1)
n^4 + 3n^2 + 1 -(n^4 + 2n^2) = n^2 + 1 chia hết cho d => (n^2 + 1)^2 = n^4 + 2n^2 + 1 chia hết cho d (2)
Từ (1) và (2) suy ra :
(n^4 + 2n^2 + 1)- (n^4 + 2n^2) chia hết cho d => 1 chia hết cho d => d=+-1
Vậy phân số trên tối giản vì mẫu và tử có ước chung là +-1
Phân số trên sẽ tối giản vì không có bất kì các số nào có thể rút gọn với nhau .
Nếu như có thể thì khi ta cộng lại cũng không thể , vì đang rút được ta cộng một vào bất kì ( mẫu / tử ) đều khiến phép tính không thể rút gọn tiếp được nữa .
Vậy không thể rút gọn và phân số này đã tối giản
a) Đặt \(A=\frac{3n+1}{5n+2}\). Gọi ƯCLN(3n+1 , 5n+2) = d \(\left(d\ge1\right)\)
Khi đó : \(3n+1⋮d\) và \(5n+2⋮d\)
\(\Rightarrow5\left(3n+1\right)⋮d\) và \(3\left(5n+2\right)⋮d\)
\(\Rightarrow3\left(5n+2\right)-5\left(3n+1\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d\le1\) mà \(d\ge1\Rightarrow d=1\)
Suy ra ƯCLN(3n+1 , 5n+2) = 1 , vậy A là phân số tối giản.
b) Đặt \(B=\frac{n^3+2n}{n^4+3n^2+1}\) . Gọi ƯCLN(n3+2n , n4+3n2+1) = d \(\left(d\ge1\right)\)
Khi đó : \(B=\frac{n\left(n^2+2\right)}{n^2\left(n+2\right)+n^2+1}\)
Ta có : \(n\left(n^2+2\right)⋮d\) và \(n^2\left(n+2\right)+n^2+1⋮d\)
Từ \(n\left(n^2+2\right)⋮d\) \(\Rightarrow\left[\begin{array}{nghiempt}n⋮d\\n^2+2⋮d\end{array}\right.\)
TH1. Nếu \(n⋮d\) thì ta viết dưới mẫu thức B dưới dạng :
\(n\left(n^3+3n\right)+1⋮d\) . mà n(n3+3n)\(⋮\)d => \(1⋮d\) \(\Rightarrow d\le1\)
Mà \(d\ge1\Rightarrow d=1\). Lập luận tương tự câu a) , suy ra đpcm
TH2. Nếu \(n^2+2⋮d\) thì ta viết mẫu thức B dưới dạng :
\(\left(n^4+2n^2\right)+\left(n^2+2\right)-1=\left(n^2+2\right)\left(n^2+1\right)-1⋮d\)
mà n2+2 \(⋮\)d nên \(1⋮d\Rightarrow d\le1\) mà \(d\ge1\) => d = 1
Lập luận tương tự...
a)Gọi UCLN(3n+1;5n+2) là d
Ta có:
[3(5n+2)]-[5(3n+1)] chia hết d
=>[15n+6]-[15n+5] chia hết d
=>1 chia hết d.Suy ra 3n+1 và 3n+5 là số nguyên tố cùng nhau
=>Phân số tối giản
b)Gọi d là UCLN(n3+2n;n4+3n2+1)
Ta có:
n3+2n chia hết d =>n(n3+2n) chia hết d
=>n4+2n2 chia hết d (1)
n4+3n2-(n4+2n2)=n2+1 chia hết d
=>(n2+1)2=n4+2n2+1 chia hết d (2)
Từ (1) và (2) => (n4+3n2+1)-(n4-2n2) chia hết d
=>1 chia hết d
=>d=1.Suy ra n3+2n và n4+3n2+1 là 2 số nguyên tố cùng nhau
=>Phân số trên tối giản
Bài 3:
\(\frac{3n+1}{5n+2}\)
Ta có : (3n +1) * 5 =15n + 5
(5n+2) *3 = 15n + 6
Mà : 15n + 6 - (15n + 5 ) =1
=>\(\frac{3n+1}{5n+2}\) tối giản ( ĐPCM)
a/rút gọn n ta còn 3+1/5+10=4/15(tối giản suy ra đpcm)
b/tương tự như câu a nhưng thay số
c/rút gọn n còn 3+2/4+3^2+1=5/14( tối giản suy ra đpcm)
d/rút gọn n ta còn 2+1/2^2-1=3/3=1/1(tối giản suy ra đpcm)
Tèn ten xong nhưng ko bik đúng hay sai nha!!!!!!!!!!!!!!!!!!!!!!!!!!!
Gọi d là ƯCLN của 2n+3 và 2n2+4n+1,\(d\in N\ne0\)
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\left(1\right)\\2n^2+4n+1⋮d\left(2\right)\end{cases}\Rightarrow\hept{\begin{cases}\left(2n+3\right)^2⋮d\\2\left(2n^2+4n+1\right)⋮d\end{cases}}}\Rightarrow\hept{\begin{cases}4n^2+12n+9⋮d\\4n^2+8n+2⋮d\end{cases}}\)
\(\Rightarrow4n^2+12n+9-4n^2-8n-2⋮d\)
\(\Rightarrow4n+7⋮d\left(1\right)\)
Từ\(2n+3⋮d\)\(\Rightarrow2\left(2n+3\right)⋮d\Rightarrow4n+6⋮d\left(2\right)\)
Từ (1) và (2) \(\Rightarrow4n+7-4n-6⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Vậy...