Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì néu n lẻ thì n+1 chẵn mà lẻ nhân chẵn bằng chẵn chia hết cho 2 mà nếu n chẵn thì n+1 lẻ mà chẵn nhân lẻ bằng lẻ nên n(n+1) chia hết cho 2
ĐÂY KHÔNG PHẢI TOÁN LỚP 1 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!....
A=10n+18n-1
=(10n-1)+18n
=9(10n-1+10n-2+...+1)+18n chia hết cho 9
=>A/9=10n-1+10n-2+...+1+2n
10 đồng dư với 1(mod 9)
=>10n-1+10n-2+...+1 đồng dư với n(mod 3)
=>A/9 đồng dư với n+2n=3n(mod 3)
=>A/9 chia hết cho 3
=>A chia hết cho 27
=>ĐPCM
a) \(\frac{1}{9}\cdot27^n=3^n\)
\(\frac{1}{9}=\frac{3^n}{27^n}\)
\(\frac{1}{9}=\frac{3^n}{3^{3n}}\)
\(\frac{1}{9}=\frac{1}{3^{2n}}\)
=> 32n = 9 = 32
=> 2n = 2
=> n = 1
Biết chư!
n chẵn thì n = 2k. Khi đó: \(P=5^n-1=5^{2k}-1=\left(5^k\right)^2-1^2=\left(5^k-1\right)\left(5^k+1\right)\).
\(5^k\)là số lẻ nên \(5^k+1\)và \(5^k-1\)là số chẵn. P là tích của 2 số chẵn nên P chia hết cho 4.
n lẻ thì: n=2k+1. Khi đó \(P=5^n-1=5^{2k+1}-5+5-1=5\cdot\left(\left(5^k\right)^2-1^2\right)+4=\left(5^k-1\right)\left(5^k+1\right)+4\)
Như trên thì \(\left(5^k+1\right)\cdot\left(5^k-1\right)\)chia hết cho 4 nên \(\left(5^k+1\right)\cdot\left(5^k-1\right)+4\). Vậy P chia hết cho 4. ĐPCM.