Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(x^3-x^2+2x=x\left(x^2-x+2\right)\)bạn xem lại đề xem có sai không nha. chỗ này sau khi thu gọn và cho x ra ngoài thì phải có dạng: \(x\left(x^2-3x+2\right)=x\left(x^2-2x-x+2\right)=x\left(x-1\right)\left(x-2\right)\)hoặc \(x\left(x^2+3x+2\right)=x\left(x^2+2x+x+2\right)=x\left(x+1\right)\left(x+2\right)\)
nó là tích của 3 số tự nhiên liên tiếp => trong đó phỉa có 1 số chia hết cho 2, có một số chia hết cho 3. vì 3,2 ngtố cùng nhau =>tích của 3 số ltiếp sẽ chia hết cho 3.2=6 => chia hết cho 6 với mọi x
2) \(a^2-\left(b^2-2bc+c^2\right)=a^2-\left(b-c\right)^2=\left(a+b-c\right)\left(a-b+c\right)\)
mình làm đến đây thì k biết giải thích sao nữa :( thôi cứ tick đúng cho mình nha
Câu 1 Sai đề. Chỉ cần thay x = 1,2,3 ta thấy ngay sai
Câu 2 sai đề. chứng minh như sau;
Thay a,b,c là số dài 3 cạnh của 1 tam giác đều có cạnh 0,5 (nhỏ hơn 1 là đủ)
\(a^2-\left(b^2-2bc+c^2\right)>c\)\(\Leftrightarrow a^2-\left(b-c\right)^2>c\)
Với a = b = c = 0,5 thì điều trên tương đương \(0,5^2-\left(0,5-0,5\right)^2>0,5\)
\(\Leftrightarrow0,25>0,5\) => vô lí
áp dụng bddt AM-GM cho 2 số dương :
a4 + b4 \(\ge\) 2a2b2 .........tương tự với b4 +c4, c4+a4
=> 2 ( a^4 + b^4 + c^4) >= 2(a^2b^2 + a^2c^2 +b^2c^2)=>.....
tương tự áp dụng bddt AM-GM
cho các cặp a2b2+b2c2 ; a2b2+c2a2 ;b2c2+c2a2
suy ra : a2b2+b2c2+c2a2\(\ge\) abc(a+b+c) (dpcm)
Áp dụng bất đẳng thức AM-GM ta có :
\(b^2+c^2\ge2\sqrt{b^2c^2}=2\sqrt{\left(bc\right)^2}=2\left|bc\right|=2bc\)( b,c > 0 )
=> a( b2 + c2 ) ≥ 2abc
Tương tự : b( c2 + a2 ) ≥ 2abc ; c( a2 + b2 ) ≥ 2abc
Cộng vế với vế các bđt trên ta có đpcm
Đẳng thức xảy ra <=> a = b = c
Chứng minh bđt \(x^2+y^2+z^2\ge xy+yz+zx\) rồi áp dụng với \(\hept{\begin{cases}x=ab\\y=bc\\z=ca\end{cases}}\) là có ngay đpcm.