K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2019

2) Theo nguyên lí Dirichlet, trong ba số \(a^2-1;b^2-1;c^2-1\) có ít nhất hai số nằm cùng phía với 1.

Giả sử đó là a2 - 1 và b2 - 1. Khi đó \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Leftrightarrow a^2b^2-a^2-b^2+1\ge0\)

\(\Rightarrow a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\ge4\left(a^2+b^2+2\right)\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\) (2)

Mà \(4\left[\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\right]\ge4\left(a+b+c+1\right)^2\) (3)(Áp dụng Bunhicopxki và cái ngoặc vuông)

Từ (2) và (3) ta có đpcm.

Sai thì chịu

9 tháng 8 2019

Xí quên bài 2 b:v

b) Không mất tính tổng quát, giả sử \(\left(a^2-\frac{1}{4}\right)\left(b^2-\frac{1}{4}\right)\ge0\)

Suy ra \(a^2b^2-\frac{1}{4}a^2-\frac{1}{4}b^2+\frac{1}{16}\ge0\)

\(\Rightarrow a^2b^2+a^2+b^2+1\ge\frac{5}{4}a^2+\frac{5}{4}b^2+\frac{15}{16}\)

Hay \(\left(a^2+1\right)\left(b^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{3}{4}\right)\)

Suy ra \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{1}{4}+\frac{1}{2}\right)\left(\frac{1}{4}+\frac{1}{4}+c^2+\frac{1}{2}\right)\)

\(\ge\frac{5}{4}\left(\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c+\frac{1}{2}\right)^2=\frac{5}{16}\left(a+b+c+1\right)^2\) (Bunhiacopxki) (đpcm)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)

8 tháng 8 2016

Ta có : \(\frac{a^2}{b^2}+\frac{b^2}{a^2}+4\ge3\left(\frac{a}{b}+\frac{b}{a}\right)\)(1) . Đặt \(x=\frac{a}{b}+\frac{b}{a}\)

\(\Rightarrow\left|x\right|=\left|\frac{a}{b}+\frac{b}{a}\right|=\left|\frac{a}{b}\right|+\left|\frac{b}{a}\right|\ge2\) \(\Rightarrow\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\)

bpt (1) \(\Leftrightarrow\left(x^2-2\right)+4\ge3x\Leftrightarrow x^2-3x+2\ge0\)

Xét bất phương trình sau : \(y^2-3y+2\ge0\Leftrightarrow\left(y-1\right)\left(y-2\right)\ge0\Leftrightarrow\orbr{\begin{cases}y\ge2\\y\le1\end{cases}}\)

Từ \(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\) suy ra x nằm trong miền nghiệm của bất  phương trình đang xét , vậy x phải  thỏa mãn  \(y^2-3y+2\ge0\), tức là \(x^2-3x+2\ge0\)đúng.

Suy ra (1) đúng. Vậy ta có đpcm 

8 tháng 8 2016

+TH1: a, b trái dấu \(\Rightarrow\frac{a}{b}+\frac{b}{a}\le0\)

\(\Rightarrow VT>0\ge VP\), bất đẳng thức luôn đúng

+TH2: a, b cùng dấu \(\Rightarrow\frac{a}{b}+\frac{b}{a}=\left|\frac{a}{b}\right|+\left|\frac{b}{a}\right|\ge2\sqrt{\left|\frac{a}{b}\right|.\left|\frac{b}{a}\right|}=2\)

bđt \(\Leftrightarrow\left(\frac{a}{b}+\frac{b}{a}\right)^2+2\ge3\left(\frac{a}{b}+\frac{b}{a}\right)\)

Đặt \(t=\frac{a}{b}+\frac{b}{a}\ge2\)

Cần chứng minh \(t^2+2\ge3t\Leftrightarrow\left(t-1\right)\left(t-2\right)\ge0\text{ }\left(\text{đúng }\forall t\ge2\right)\)

1 tháng 5 2017

Thêm điều kiện là a,b cùng dấu nha! mình đánh thiếu

1 tháng 5 2017

Vì nó thik thì nó \(\ge\) thôi

Đúng 100%

Đúng 100%

Đúng 100%

27 tháng 11 2017

Áp dụng BĐT AM-GM ta có: 

\(VT=a^2+b^2+\frac{a}{b}+\frac{b}{a}+\frac{1}{a}+\frac{1}{b}+a+b\)

\(=1+\frac{a}{b}+\frac{b}{a}+\frac{1}{a}+\frac{1}{b}+a+b\)

\(=1+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{1}{a}+2a\right)+\left(\frac{1}{b}+2b\right)-\left(a+b\right)\)

\(\ge3+2\sqrt{\frac{1}{a}\cdot2a}+2\sqrt{\frac{1}{b}\cdot2b}-\sqrt{2\left(a^2+b^2\right)}\)

\(\ge3+4\sqrt{2}-\sqrt{2}=3+3\sqrt{2}=3\left(1+\sqrt{2}\right)\)

Khi \(a=b=\frac{1}{\sqrt{2}}\) 

10 tháng 3 2019

Autofix: ON

\(VT=a+\frac{4}{\left(a-b\right)\left(b+1\right)^2}\)

\(=a-b+\frac{4}{\left(a-b\right)\left(b+1\right)^2}+\frac{b+1}{2}+\frac{b+1}{2}-1\)

\(\ge4\sqrt[4]{a-b\cdot\frac{4}{\left(a-b\right)\left(b+1\right)^2}\cdot\frac{b+1}{2}\cdot\frac{b+1}{2}}-1\)

\(\ge4-1=3=VP\)

5 tháng 1 2021

Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3

Chứng minh rằng với mọi k > 0 ta luôn có....

5 tháng 1 2021

.

Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3

Chứng minh rằng với mọi k > 0 ta luôn có