K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2015

\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)\(\Leftrightarrow\frac{a-b+2b}{a-b}=\frac{c-a+2a}{c-a}\)\(\Leftrightarrow1+\frac{2b}{a-b}=1+\frac{2a}{c-a}\)

\(\Leftrightarrow\frac{2b}{a-b}=\frac{2a}{c-a}\)\(\Rightarrow\)2b . (c - a) = 2a . (a - b) \(\Rightarrow\) 2bc - 2ba = 2a2 - 2ab

\(\Leftrightarrow\) 2bc = 2a2 \(\Leftrightarrow\) bc = a2 (điều phải chứng minh) 

18 tháng 1 2019

Từ giả thiết suy ra :\(\left(a+b\right)\left(c-a\right)=\left(a-b\right)\left(c+a\right)\)

Hay \(ac-a^2+bc-ab=ac-bc+a^2-ab\)

\(\Leftrightarrow-\left(a^2-bc+ab\right)=-\left(bc-a^2+ab\right)\)(bớt ac ở mỗi vế

\(\Leftrightarrow a^2-bc+ab=bc-a^2+ab\) (nhân hai vế với -1)

\(\Leftrightarrow2a^2=2bc\Leftrightarrow a^2=bc\) (chuyển vế + chia cả hai vế cho 2)

29 tháng 5 2015

\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\Rightarrow\left(a+b\right)\left(c-a\right)=\left(c+a\right)\left(a-b\right)\Rightarrow ac+bc-a^2-ab=ac+a^2-bc-ab\Rightarrow bc-a^2=a^2-bc\)\(\Rightarrow bc=2a^2-bc\Rightarrow2a^2=2.bc\Rightarrow a^2=bc\)

11 tháng 7 2016

\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}\)

Theo t/c dãy tỉ số=nhau:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

\(=>\frac{a+b}{a-b}=\frac{c+d}{c-d}\) (hoán vị trung tỉ)

Vậy.......

23 tháng 12 2016

Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

Ta có: \(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\) (1)

\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\) (2)

Từ (1) và (2) suy ra \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

23 tháng 12 2016

Ta có : a/b = c/d suy ra a/c = b/d.

Theo tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

Suy ra:

\(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

A/B=C/D <=>A/C=B/D

THEO TÍNH CHẤT CỦA DÃY TỈ SỐ = NHAU TA CÓ

A/C=B/D=A+B/C+D=A-B/C-D

=>A+B/C+D=A-B/C-D

=>A+B/A-B=C+D/C-D =>ĐPCM

15 tháng 6 2018

giải cả ra nhé

Ta có :a/b = c/d suy ra a/c = b/d

Áp dụng tích chất dãy tính chất tỉ số bằng nhau

a/c =b/d = a+b/c+d = a-b/c-d suy ra a+b/a-b = c+d/c-d

2 tháng 10 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

1)\(VT=\frac{a}{b}=\frac{bk}{b}=k\left(1\right)\)

\(VP=\frac{a+c}{b+d}=\frac{bk+dk}{b+d}=\frac{k\left(b+d\right)}{b+d}=k\left(2\right)\)

Từ (1) và (2) ->Đpcm

2)\(VT=\frac{a-b}{a}=\frac{bk-b}{bk}=\frac{b\left(k-1\right)}{bk}=\frac{k-1}{k}\left(1\right)\)

\(VP=\frac{c-d}{c}=\frac{dk-d}{dk}=\frac{d\left(k-1\right)}{dk}=\frac{k-1}{k}\left(2\right)\)

Từ (1) và (2) ->Đpcm

9 tháng 10 2020

Hướng dẫn cách làm nè!
Đầu tiên làm ra nháp:
Xuất phát từ đầu bài: \(\frac{a}{b}\)=\(\frac{a+c}{b+d}\)
=> a.( b+d ) = b.( a+c ) {tích chéo}
=>ab+ad = ab+bc {phân phối}
=>ad = bc {rút gọn cùng chia cho ab}
=>\(\frac{a}{b}\)= \(\frac{c}{d}\) {tính chất của tlt}
_Đó là phần nháp, còn trình bày bạn chỉ cần chép từ dưới lên:
\(\frac{a}{b}\)=\(\frac{c}{d}\)
=> ad=bc
=> ab+ad=ab+bc
=> a.( b+d )= b. (a+c)
=> \(\frac{a}{b}\) = \(\frac{a+c}{b+d}\)

Còn ý b làm tương tự nha!
27 tháng 12 2016

Ta có : a/b=c/d<=>a/c=b/d=a+b/c+d=a-b/c-d

=>a+b/a-b=c+d=c-d

27 tháng 12 2016

Ta có:\(\frac{a}{b}\)=\(\frac{c}{d}\)\(\Rightarrow\)\(\frac{a}{c}\)=\(\frac{b}{d}\)

Đặt \(\frac{a}{c}\)=\(\frac{b}{d}\)=k (k\(\in\)Z)\(\Rightarrow\)\(\hept{\begin{cases}a=ck\\b=dk\end{cases}}\) 

\(\Rightarrow\)\(\frac{a+b}{a-b}\)=\(\frac{ck+dk}{ck-dk}\)=\(\frac{k}{k}\).\(\frac{c+d}{c-d}\)=\(\frac{c+d}{c-d}\)

Vậy ta đã chứng minh được \(\frac{a+b}{a-b}\)=\(\frac{c+d}{c-d}\)