Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x^2y^4\)-\(5xy^3\)-\(\dfrac{3}{2}x^2y^4\)+\(3xy^3\)+\(2xy^3\)+1=1,5\(x^2y^4\)+1>0
Gọi \(3\) số cần tìm lần lượt là \(a,b,c (a,b,c \in R)\)
Suy ra tổng của \(3\) số đó là :\(35.3=105\)
Theo bài ra ta có: \(\left\{\begin{matrix}a+b+c=105\left(1\right)\\a=2b\left(2\right)\\b=2c\left(3\right)\end{matrix}\right.\)
Thay \((3)\) và \(\left(2\right)\) vào \((1)\) ta có:
\(\left(1\right)\Leftrightarrow2\cdot2c+2c+c=105\)
\(\Leftrightarrow4c+2c+c=105\)
\(\Leftrightarrow7c=105\Leftrightarrow c=15\) thay vào \((3)\) ta có:
\(\left(3\right)\Leftrightarrow b=2c\Rightarrow b=2\cdot15=30\) thay vào \((2)\) ta có:
\(\left(2\right)\Leftrightarrow a=2b=2\cdot30=60\)
Vậy 3 số đó là \(\left\{\begin{matrix}a=60\\b=30\\c=15\end{matrix}\right.\)
Gọi a, b thuộc vòng tròn trên mà tích 2 số bất kì cạnh nhau luôn bằng 16.
\(a.b=16\)
Tích của số cạnh a hoặc b thì tích của số đó với a hoặc \(b = 16.\)
\(\Rightarrow\) Số cạnh a hoặc b chính là b hoặc a.
Mà \(16=1.16=2.8=4.4\)
Mà trong bài chỉ yêu cầu tìm số n thôi.
\(\Rightarrow n=4\)
Sao hổng ai trả lời zậy?????
Mấy bạn siu thông minh đâu rùi??????????????
\(xy-x-y+1=0\)
\(\Rightarrow x.\left(y-1\right)-\left(y-1\right)=0\)
\(\Rightarrow\left(y-1\right).\left(x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}y-1=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
Vậy \(x=y=1\)
Chúc bạn học tốt!!!
Tìm x,y biết:
xy-x-y+1=0
=> x(y-1)-y=0-1
=> x(y-1)- (y-1)= (-1)
=> (y-1)(x-1)=(-1)
\(\Rightarrow\left[{}\begin{matrix}y-1=1;x-1=-1\\y-1=-1;x-1=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=2;x=0\\y=0;x=2\end{matrix}\right.\)
Ta có: \(\left|x-1\right|+\left|x-5\right|=\left|x-1\right|+\left|5-x\right|\)
Nhận thấy: \(\left[{}\begin{matrix}\left|x-1\right|\ge x-1\\\left|5-x\right|\ge5-x\end{matrix}\right.\)
\(\Rightarrow\left|x-1\right|+\left|5-x\right|\ge x-1+5-x\)
\(\Rightarrow\left|x-1\right|+\left|5-x\right|\ge4\)
Dấu \("="\) xảy ra khi:
\(\left[{}\begin{matrix}x-1\ge0\\5-x\ge0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\ge1\\x\le5\end{matrix}\right.\) \(\Rightarrow1\le x\le5\)
Vậy \(1\le x\le5.\)
Cho mk thêm cái ạ:
\(x\in\left\{1;2;3;4;5\right\}\)
Vậy \(x\in\left\{1;2;3;4;5\right\}\)
Giả sử 8 số nguyên dương tùy ý đã cho là a1, a2,..., a8 với
1 ≤ a1 ≤ a2 ≤....≤ a8 ≤ 201 ≤ a1 ≤ a2 ≤... ≤ a8 ≤ 20
Nhận thấy rằng a,b,c thỏa mãn a ≥ b ≥ ca ≥ b ≥ c và b+c > ab+c >a thì a,b,c là độ dài 3 cạnh của một tam giác . Từ đó ta thấy nếu trong các số a1,a2,..., a8 không chọn đc 3 số là độ dài 3 cạnh của một tam giác thì:
a6 ≥ a7 + a8 ≥ 1+1 = 2a6≥ a7 + a8 ≥ 1 +1=2
a5 ≥ a6 + a7 ≥2 + 1= 3a5≥ a6 + a7≥ 2 +1=3
a4 ≥ a5 + a6 ≥ 3+2 = 5a4 ≥ a5+ a6 ≥ 3+2=5
a3 ≥ a4 +a5 ≥ 5+3=8a3 ≥ a4+a5 ≥ 5+3=8
a2 ≥ a3 +a4 ≥ 8+5=13a2 ≥ a3+a4 ≥ 8+5=13
a1 ≥ a2 + a 3≥ 13+8=21a1 ≥ a2+a3 ≥ 13+8=21,( trái với giả thiết)
Vậy điều giả sử trên là sai. Do đó trong 8 số nguyên trên đã cho luôn chọn đc 3 số x,y,z là độ dài 3 cạnh của một tam giác.
~ Chúc bn hk tốt!!!~
Hay