Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\left(3+3^{3+3^3}\right)+.....+\left(3^{97}+3^{98}+3^{99}\right)\)
\(S=39.1+39.3^3+....+39.3^{96}=>S=39\left(1+3^3+3^6+.....+3^{96}\right)\)
Vậy S chia hết cho 39
=3^x(3+3^2+3^3+3^4)+(3^x+4)(3+3^2+3^3+3^4)+...
=3^x.120+(3^x+4).120+...
=120(3^x+3^x+4...) chia hết cho 120
=>x^3+1...(đề bài) chia hết cho 120
(Một số dấu ngoặc mk thêm để cho dễ nhìn nha)
Nhớ k cho mk đó!
\(A=1+3^2+3^4+...+3^{100}\)
\(9A=3^2+3^4+3^6+...+3^{102}\)
\(8A=3^{102}-1\)
\(\Rightarrow8A-26=3^{102}-1-26=3^{102}-27\)
Vì \(3^{102}-27⋮3\)(1)
\(3^{102}-27⋮2\)(\(3^{102}-27\)là số chẵn ) (2)
\(3^{102}-27=9\left(3^{100}-3\right)\)\(\Rightarrow3^{102}-27⋮9\)(3)
Từ (1) , (2), (3) \(\Rightarrow8A-26⋮54\)\(\left(\left(2,3,9\right)=1\right)\)
vậy ...
\(A=1+3^2+3^4+...+3^{100}\)
\(\Leftrightarrow3^2A=3^2\left(1+3^2+3^4+....+3^{100}\right)\)
\(\Leftrightarrow9A=3^2+3^4+3^6+...+3^{102}\)
\(\Leftrightarrow9A-A=\left(3^2+3^4+3^6+....+3^{102}\right)-\left(1+3^2+3^4+...+3^{100}\right)\)
\(\Leftrightarrow8A=3^{102}-1\)
\(\Leftrightarrow8A-26=3^{102}-1-26=3^{102}-27\)
Ta có: \(3^{102}⋮3;27⋮3\Rightarrow3^{102}-27⋮3\left(1\right)\)
\(3^{102}-27⋮2\left(2\right)\)(3^102 -27 là số lẻ)
\(3^{102}-27=\left(3^2\right)^{51}-27=9^{51}-27⋮9\left(3\right)\)
(1)(2)(3) => 8A-26 chia hết cho 54 (đpcm)
S=(5+5^2+5^3)+(5^4+5^5+5^6)+...+(5^28+5^29+5^30)
=>Có 30:3=10 nhóm
=>S=5(1+5+5^2)+...+5^28(1+5+5^2)
=>S=5.31+...+5^28.31
S=31(5+....+5^28) chia hết cho 31
nhớ bấm đúng cho mình bạn nhé
7) Bạn xem lại đề. Phải chia hết cho 26 chứ ???
8) Đặt A = 2 + 22 + 23 + ... + 2100
Nhóm 2 số lại:
A= 2(1+2)+23(1+2)+25(1+2)+...+299(1+2)=2.3+23.3+25.3+...+299.3=3(2+23+25+...+299) chia hết cho 3
Tương tự nhóm 4 số sẽ được A chia hết cho 5.
A chia hết cho 3 và 5 nên A chia hết cho 15
A chia hết cho 2 sẵn rồi
CM A chia hết cho 30:
\(2+2^2+2^3+...+2^{100}\)
\(=\left(2+2^2+2^3+2^4\right)+2^4\left(2+2^2+2^3+2^4\right)+....+2^{96}\left(2+2^2+2^3+2^4\right)\)
\(=30.\left(1+2^4+...+2^{96}\right)⋮30\)
Gợi ý;
B chia hết cho 5 sắn rồi
chia hết cho 6 nhóm 2 số vào
Chi hết cho 31 nhóm 3 số vào
\(S=3+3^2+3^3+3^4+...+3^{99}+3^{100}\)
\(=3.\left(1+3+3^2+3^3\right)+...+3^{97}.\left(1+3+3^2+3^3\right)\)
\(=3.\left(1+3+9+27\right)+...+3^{97}.\left(1+3+9+27\right)\)
\(=3.40+...+3^{97}.40\)
\(=40.\left(3+...+3^{97}\right)\)
\(=5.8.\left(3+...+3^{97}\right)\text{chia hết cho 5}\)
=> S chia hết cho 5 =>đpcm.
S=3+3^2+3^3+....+3^100
S=(3+3^2+3^3+3^4)+....+(3^97+3^98+3^99+3^100)
S=1(3+3^2+3^3+3^4)+...+3^96.(3+3^2+3^3+3^4)
S=1.120+...+3^96.120
S=120(1+...+2^96)
S=5.24(1+...+2^96) chia hết cho 5