Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì tổng 3 số tự nhiên liên tiếp luôn luôn là số chia hết cho ba vậy nên một trong ba số đó phải là một số chia hết cho 3
Gọi 3 số tự nhiên liên tiếp lần lượt là: n, n+1, n+2
Ta có: n+ (n+1) + (n+2) = 3n + 3 = 3(n+1) chia hết cho 3
gọi 3 số tự nhiên Liên tiếp là: a,a+1,a+2. => a+(a+1)(a+2)=a+a+1+a+2=3a+3. 3a chia hết cho 3,3 cũng chia hết cho 3 => tổng này luôn luôn chia hết cho 3
gọi 3 số tự nhiên Liên tiếp là: a,a+1,a+2.
=> a+(a+1)(a+2)=a+a+1+a+2=3a+3.
3a chia hết cho 3,3 cũng chia hết cho 3
=> tổng này luôn luôn chia hết cho 3.
gọi 3 số lẻ liên tiếp lần lượt là:
2k+1 ; 2k+3 ; 2k+5
=> tổng 3 số lẻ liên tiếp là:
2k+1+2k+3+2k+5
= (2k+2k+2k)+(1+3+5)
= 6k+9= 3(2k+3) \(⋮\)3 với \(\forall\)k
vậy tổng 3 số lẻ liên tiếp chia hết cho 3 nhưng không chia hết cho 6
1: A) Số đó là: 102
B) Số đó là 108
2: A). Gọi 3 số đó là a; a + 1; a + 2
Ta có: a + a + 1 + a + 2 = 3a +3
3 chia hết cho 3 => 3a chia hết cho 3
=> 3a + 3 chia hết cho 3
=> Tổng của 3 số tự nhiên liên tiếp luôn chia hết cho 3
B) Mình chịu vì mình không biết làm. Xin lỗi bạn
~ Chúc bạn học tốt ~
1
a) 102
b ) 108
2
a) ví dụ
1+2+3=6'
4+5+6=15
6+7+8=21
b)
1x2x3=6
2 x 3 x 4 = 24
3 x 4 x 5 =60
nhớ k cho mình nha
Gọi số đề bài cho là: a(a+1)(a+2) (a khác 0; a là chữ số)
Ta thấy: a + (a + 1) + (a + 2)
= a + a + 1 + a + 2
= 3a + 3
= 3.(a + 1) chia hết cho 3
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 3
=> a(a+1)(a+2) chia hết cho 3 (đpcm)
Ta có các số chia hết cho 3 có tổng các số : 3 . Ta gọi chữ số đầu tiên của số đó là a , ta có :
Tổng các chữ số cuả số đó = a + a + 1 + a + 2
= a . 3 + [ 1 + 2 ]
= a . 3 + 3
Vì a . 3 chia hết cho 3 , 3 chia hết cho 3 nên a . 3 + 3 chia hết cho 3 . Tổng các chữ số chia hết cho 3 nên số đó chia hết cho 3
Một số có 3 chữ số và các số của nó là các số tự nhiên liên tiếp chia hết cho 3
a) Vì tổng tận cùng là 0 nên chia hết cho 2;5
b) Vì ba số tự nhiên liên tiếp luôn luôn có số chẵn ba số tự nhiên liên tiếp luôn luôn có 1 số chia hết cho 3
nên chia hết cho 2 ;3
Tích đúng nha
Gọi 3 số tự nhiên liên tiếp đó là n-1, n, n+1 (n thuộc N*)
Ta phải chứng minh A = (n-1)n(n+1) chia hết cho 6
n-1 và n là 2 số tự nhiên liên tiếp nên 1 trong 2 số phải chia hết cho 2
=> A chia hết cho 2
n-1, n và n+1 là 3 số tự nhiên liên tiếp nên 1 trong 3 số phải chia hết cho 3 => A chia hết cho 3
Mà (2; 3) = 1 (2 và 3 nguyên tố cùng nhau) => A chia hết cho 2. 3 = 6 (đpcm)
gọi 3 số tự nhiên liên tiếp là a ; a+1 ; a+2 ( a thuộc N )
ta có :
a+(a+1)+(a+2)=3a+3=3 . ( a + 1 ) chia hết cho 3
vậy tổng của 3 số liên tiếp chia hết cho 3 .