Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét 18 số: 219, 219219,219219219,...,219219219219...219219
|19 cụm 219|
Vì khi chia 1 số cho 17 có 17 số dư mà có 18 số nên theo nguyên lý Đirichlê có ít nhất 2 số có cùng số dư khi chia cho 17=> Hiệu chúng chia hết cho 17
Gọi đó là 219219219219...219 và 219219219219...219
|m cụm 219| |n cụm 219| (m>n)
=> 219219219219...219 - 219219219219...219 chia hết cho 17
|m cụm 219| |n cụm 219|
=> 219219219...219000....0000 chia hết cho 17
|m-n cụm 219| |3n số 0|
=> \(219219219...219.10^{ }\) 3n chia hết cho 17
Mà (103n;17)=1 => 219219219...219 chia hết cho 17
Gọi số n là số lẻ có tận cùng khác 5.
Xét dãy số gồm (n+1) số nguyên sau :
9
99
999
......
99....999
(n+1) chữ số 9
Khi chia cho n thì sẽ có (n+1) số dư
=>Theo ng.lý dinchlet có ít nhất 2 số có cùng số dư .
Gỉa sử : ai = n . q + r o < r < n
:aj = n . k + r i > j ; g , k thuộc N
=>ai - aj = n (g-k)
<=> 99 ... 99 00...0 = ( g-k )
( i - j ) j chữ
chữ số 9 số 0
<=>99 ... 99 . 10j = n ( g - k )
( i - j )
c/số 9
Vì n là số lẻ có tận cùng khác 5 => ( 10j ; n ) = 1
=> 99 ... 99 :. n ( đpcm )
( i - j )
c/số 9
Trong phép chia cho 1000 có 1000 số dư là 0,1,2,3,...,999.
Xét 1001 số: 3,32,33,...,31001 thì tồn tại 2 số có cùng số dư trong phép chia cho 1000.
Gọi 2 só đó là 3a và 3b (1=<a=<b=<1001). 3a-3b chia hết cho 1000
=> 3b.(3a-b-1) chia hết cho 1000.
Ta có: (3b,1000)=1 => 3a-b-1 chia hết cho 1000 => 3a-b có tậm cùng là 0001.
Vì 17 là số nguyên tố và bội các số đều có 0 nên bội của 17 luôn luôn là 0 và 1
Giả sử có một số chia hết cho 17 và có tận cùng là 219 nên đặt số đó bằng a219. Ta có:
a219 chia hết cho 17
a1000 + 219 chia hết cho 17
Mà 219 chia 17 dư 15
a1000 chia 17 dư 2
Mà 1000 chia 17 dư 14
a chia 17 dư 5
a = 5( tmđk)
Vậy số tìm được là 5129(đpcm)