Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} x = 1\).
\(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \left( { - {x^2}} \right) = - {1^2} = - 1\).
Vì \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {1^ - }} {\rm{ }}f\left( x \right)\) nên không tồn tại \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\).
a) Ta có \(\lim\limits_{x\rightarrow-\infty}\dfrac{4x+1}{-x+1}=\lim\limits_{x\rightarrow-\infty}\left(\dfrac{-4+\dfrac{1}{x}}{1+\dfrac{1}{x}}\right)=-4\)
b) Ta có \(\lim\limits_{x\rightarrow2}f\left(x\right)=\lim\limits_{x\rightarrow2}\dfrac{x^2-x-2}{x-2}=\lim\limits_{x\rightarrow2}\left(\dfrac{\left(x+1\right)\left(x-2\right)}{x-2}\right)\)
\(=\lim\limits_{x\rightarrow2}\left(x+1\right)=2+1=3\)
Để hàm số đã cho liên tục tại \(x=2\) thì \(\lim\limits_{x\rightarrow2}f\left(x\right)=f\left(2\right)=m\) hay \(m=3\).
a) Giả sử \(\left( {{x_n}} \right)\) là dãy số bất kì, \({x_n} > - 1\) và \({x_n} \to - 1\). Khi đó \(f\left( {{x_n}} \right) = x_n^2 + 2\)
Ta có: \(\lim f\left( {{x_n}} \right) = \lim \left( {x_n^2 + 2} \right) = \lim x_n^2 + \lim 2 = {\left( { - 1} \right)^2} + 2 = 3\)
Vậy \(\mathop {\lim }\limits_{x \to - {1^ + }} f\left( x \right) = 3\).
Giả sử \(\left( {{x_n}} \right)\) là dãy số bất kì, \({x_n} < - 1\) và \({x_n} \to - 1\). Khi đó \(f\left( {{x_n}} \right) = 1 - 2{x_n}\).
Ta có: \(\lim f\left( {{x_n}} \right) = \lim \left( {1 - 2{x_n}} \right) = \lim 1 - \lim \left( {2{x_n}} \right) = \lim 1 - 2\lim {x_n} = 1 - 2.\left( { - 1} \right) = 3\)
Vậy \(\mathop {\lim }\limits_{x \to - {1^ - }} f\left( x \right) = 3\).
b) Vì \(\mathop {\lim }\limits_{x \to - {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {1^ - }} {\rm{ }}f\left( x \right) = 3\) nên \(\mathop {\lim }\limits_{x \to - 1} f\left( x \right) = 3\).
Vì \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = 3 \ne \mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = 5\) nên không tồn tại giới hạn \(\mathop {\lim }\limits_{x \to 2} f\left( x \right)\)
a.
\(\lim\limits_{x\rightarrow+\infty}\left(\sqrt[3]{x^3+4x^2}-x\right)=\lim\limits_{x\rightarrow+\infty}\dfrac{4x^2}{\sqrt[3]{\left(x^3+4x^2\right)^2}+x\sqrt[3]{x^3+4x^2}+x^2}\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{4}{\sqrt[3]{\left(1+\dfrac{4}{x}\right)^2}+\sqrt[3]{1+\dfrac{4}{x}}+1}=\dfrac{4}{1+1+1}=\dfrac{4}{3}\)
b.
\(\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^+}\dfrac{4x-1}{x-1}=\dfrac{3}{0}=+\infty\)
\(\lim\limits_{x\rightarrow1^-}f\left(x\right)=\lim\limits_{x\rightarrow1^-}\left(7x+1\right)=8\)
a: \(\lim\limits_{x\rightarrow3^+}f\left(x\right)=\lim\limits_{x\rightarrow3^+}x^2-3=3^2-3=6\)
\(\lim\limits_{x\rightarrow3^-}f\left(x\right)=\lim\limits_{x\rightarrow3^-}x+3=3+3=6\)
b: Vì \(\lim\limits_{x\rightarrow3^+}f\left(x\right)=\lim\limits_{x\rightarrow3^-}f\left(x\right)=6\)
nên hàm số tồn tại lim khi x=3
=>\(\lim\limits_{x\rightarrow3}f\left(x\right)=6\)
Bài 2:
\(\lim\limits_{x\to 2}\frac{x-\sqrt{x+2}}{\sqrt{4x+1}-3}=\lim\limits_{x\to 2}\frac{x^2-x-2}{(x+\sqrt{x+2}).\frac{4x+1-9}{\sqrt{4x+1}+3}}=\lim\limits_{x\to 2}\frac{(x-2)(x+1)(\sqrt{4x+1}+3)}{(x+\sqrt{x+2}).4(x-2)}=\lim\limits_{x\to 2}\frac{(x+1)(\sqrt{4x+1}+3)}{4(x+\sqrt{x+2})}=\frac{9}{8}\)
Bài 3:
\(\lim\limits_{x\to 0-}\frac{1-\sqrt[3]{x-1}}{x}=-\infty \)
\(\lim\limits_{x\to 0+}\frac{1-\sqrt[3]{x-1}}{x}=+\infty \)
Bài 4:
\(\lim\limits_{x\to -\infty}\frac{x^2-5x+1}{x^2-2}=\lim\limits_{x\to -\infty}\frac{1-\frac{5}{x}+\frac{1}{x^2}}{1-\frac{2}{x^2}}=1\)
Bài 5:
\(\lim\limits_{x\to +\infty}\frac{2x^2-4}{x^3+3x^2-9}=\lim\limits_{x\to +\infty}\frac{\frac{2}{x}-\frac{4}{x^3}}{1+\frac{3}{x}-\frac{9}{x^3}}=0\)
Bài 6:
\(\lim\limits_{x\to 2- }\frac{2x-1}{x-2}=\lim\limits_{x\to 2-}\frac{2(x-2)+3}{x-2}=\lim\limits_{x\to 2-}\left(2+\frac{3}{x-2}\right)=-\infty \)
Bài 7:
\(\lim\limits _{x\to 3+ }\frac{8+x-x^2}{x-3}=\lim\limits _{x\to 3+}\frac{1}{x-3}.\lim\limits _{x\to 3+}(8+x-x^2)=2(+\infty)=+\infty \)
Bài 8:
\(\lim\limits _{x\to -\infty}(8+4x-x^3)=\lim\limits _{x\to -\infty}(-x^3)=+\infty \)
Bài 9:
\(\lim\limits _{x\to -1}\frac{\sqrt[3]{x}+1}{\sqrt{x^2+3}-2}=\lim\limits _{x\to -1}\frac{x+1}{\sqrt[3]{x^2}-\sqrt[3]{x}+1}.\frac{\sqrt{x^2+3}+2}{x^2+3-4}=\lim\limits _{x\to -1}\frac{x+1}{\sqrt[3]{x^2}-\sqrt[3]{x}+1}.\frac{\sqrt{x^2+3}+2}{(x-1)(x+1)}\)
\(\lim\limits _{x\to -1}\frac{\sqrt{x^2+3}+2}{(\sqrt[3]{x^2}-\sqrt[3]{x}+1)(x-1)}=\frac{-2}{3}\)
em gửi bài