Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Tính số đo các góc BOD, DOE, COE
Dựa vào các số đo đã cho:
- ∠BOC = 42°
- ∠AOD = 97°
- ∠AOE = 56°
Giả sử các tia nằm trên cùng một mặt phẳng và theo thứ tự: B → O → C → D → E → A
Tính từng góc:
- ∠BOD = ∠AOD − ∠BOC = 97° − 42° = 55°
- ∠DOE = ∠AOE − ∠AOD = 56° − 97° = −41° → không hợp lý
→ Vậy ta lấy: ∠DOE = ∠AOD − ∠AOE = 97° − 56° = 41° - ∠COE = ∠BOD + ∠DOE = 55° + 41° = 96°
- b) Tia OD có phải là phân giác của góc COE không?
- Phân giác là tia chia góc thành hai phần bằng nhau.
- ∠COE = 96°, mà ∠BOD = 55°, ∠DOE = 41°
- Vì 55° ≠ 41°, nên tia OD không phải là phân giác của ∠COE

a) tam giác ABC có AB=AC (gt)
=> BD=CE
b)BD=CE (cmt)
=> OEB=ODC
c)vì O là giao điểm BD và CE (gt)
mà OEB=ODC
=> AO là tia phân giác của BAC

Bài giải
Chiều rộng là 10 m, chiều dài là
3 x 10 = 30 (m)
Giảm chiều dài đi 5 m thì còn 25 m, thì bằng \(\frac{5}{2} \times 10\).
Vậy chiều dài 30 m, chiều rộng 10 m.
Diện tích hình chữ nhật là
30 . 10 = 300 (m²)
đáp số 300m²

A B C E D O
a)Xét ΔADB và ΔAEC có:
\(\widehat{ADB}=\widehat{AEC}=90^o\)
AB=AC(gt)
\(\widehat{A}\) : góc chung
=> ΔADB=ΔAEC ( cạnh huyền - góc nhọn)
=> BD=CE
b) Vì ΔADB=ΔAEC(cmt)
=> \(\widehat{ABD}=\widehat{ACE};AD=AE\)
Có: AB=AE+BE
AC=AD+DC
Mà: AB=AC(gt); AE=AD(cmt)
=>BE=DC
Xét ΔOEB và ΔODC có:
\(\widehat{OEB}=\widehat{ODC}=90^o\)
BE=DC(cmt)
\(\widehat{EBO}=\widehat{DCO}\left(cmt\right)\)
=> ΔOEB=ΔODC(g.c.g)
c) Vì: ΔOEB=ΔODC (cmt)
=> OB=OC
Xét ΔAOB và ΔAOC có:
AB=AC(gt)
\(\widehat{ABO}=\widehat{ACO}\left(cmt\right)\)
OB=OC(cmt)
=> ΔAOB=ΔAOC(c.g.c)
=> \(\widehat{OAB}=\widehat{OAC}\)
=> AO là tia pg của \(\widehat{BAC}\)

a, xét tam giác DCB và tam giác EBC có : BC chung
^ABC = ^ACB do tam giác ABC cân tại A (gt)
^CDB = ^BEC = 90
=> tam giác DCB = tam giác EBC (ch-gn)
=> BD = CE (đn)
b, tam giác DCB = tam giác EBC (câu a)
=> ^OCB = ^OBC (đn)
=> tam giác OBC cân tại O (đn)
=> OB = OC
xét tam giác ODC và tam giác OEB có : ^DOC = ^EOB (đối đỉnh)
^ODC = ^OEB = 90
=> Tam giác ODC = tam giác OEB (ch-gn)
c,
tam giác DCB = tam giác EBC (câu a)
=> ^OCB = ^OBC (đn)
^ABC = ^ACB (câu a)
^DCO + ^OCB = ^ACB
^EBO + ^OBC = ^ABC
=> ^DCO = ^EBO
xét tam giác ACO và tam giác ABO có : AB = AC (gt)
OC = OB (câu b)
=> tam giác ACO = tam giác ABO (c-g-c)
=> ^CAO = ^BAO mà AO nằm giữa AB và AC
=> AO là pg của ^BAC (đn)

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔADB=ΔAEC
=>BD=CE
b: ΔABD=ΔACE
=>\(\widehat{ABD}=\widehat{ACE}\)
=>\(\widehat{OBE}=\widehat{OCD}\)
ΔABD=ΔACE
=>AD=AE
AE+EB=AB
AD+DC=AC
mà AE=AD và AB=AC
nên EB=DC
Xét ΔOEB vuông tại E và ΔODC vuông tại D có
EB=DC
\(\widehat{OBE}=\widehat{OCD}\)
Do đó: ΔOEB=ΔODC
c: ΔOEB=ΔODC
=>OB=OC
Xét ΔABO và ΔACO có
AB=AC
BO=CO
AO chung
Do đó: ΔABO=ΔACO
=>\(\widehat{BAO}=\widehat{CAO}\)
=>AO là phân giác của góc BAC
d: Ta có: ΔABC cân tại A
mà AH làđường trung tuyến
nên AH là phân giác của góc BAC
mà AO là phân giác của góc BAC(cmt)
và AO,AH có điểm chung là A
nên A,O,H thẳng hàng

a,
xét tam giác abd và tam giác ace có
ab=ac(gt)
góc adb=góc aec=90 độ(gt)
góc a chung
=>tam giác abd= tam giác ace(cgc)
=>bd=ce(2 cạnh tg ứng)
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
\(\widehat{DAB}\) chung
Do đó: ΔADB=ΔAEC
=>BD=CE
b: ΔABD=ΔACE
=>\(\widehat{ABD}=\widehat{ACE}\) và AD=AE
Ta có: AD+DC=AC
AE+EB=AB
mà AD=AE và AC=AB
nên DC=EB
Xét ΔOEB vuông tại E và ΔODC vuông tại D có
EB=DC
\(\widehat{OBE}=\widehat{OCD}\)
Do đó: ΔOEB=ΔODC
c: ΔOEB=ΔODC
=>OB=OC
Xét ΔAOB và ΔAOC có
AO chung
OB=OC
AB=AC
Do đó: ΔAOB=ΔAOC
=>\(\widehat{OAB}=\widehat{OAC}\)
=>AO là phân giác của góc BAC
d: Ta có: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Ta có: HB=HC
=>H nằm trên đường trung trực của BC(3)
Từ (1),(2),(3) suy ra A,O,H thẳng hàng