Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(tan3\alpha-tan2\alpha-tan\alpha=\left(tan3\alpha-tan\alpha\right)-tan2\alpha\)
\(=\left(\dfrac{sin3\alpha}{cos3\alpha}-\dfrac{sin\alpha}{cos\alpha}\right)-\dfrac{sin2\alpha}{cos2\alpha}\)\(=\dfrac{sin3\alpha cos\alpha-cos3\alpha sin\alpha}{cos3\alpha cos\alpha}-\dfrac{sin2\alpha}{cos2\alpha}\)
\(=\dfrac{sin2\alpha}{cos3\alpha cos\alpha}-\dfrac{sin2\alpha}{cos2\alpha}\)
\(=sin2\alpha.\left(\dfrac{1}{cos3\alpha cos\alpha}-\dfrac{1}{cos2\alpha}\right)\)
\(=sin2\alpha.\dfrac{cos2\alpha-cos3\alpha cos\alpha}{cos3\alpha cos\alpha cos2\alpha}\)
\(=sin2\alpha.\dfrac{cos2\alpha-\dfrac{1}{2}\left(cos4\alpha+cos2\alpha\right)}{cos3\alpha cos2\alpha cos\alpha}\)
\(=sin2\alpha.\dfrac{cos2\alpha-cos4\alpha}{2cos3\alpha cos2\alpha cos\alpha}\)
\(=\dfrac{sin2\alpha.2sin3\alpha.sin\alpha}{2cos3\alpha cos2\alpha cos\alpha}\)
\(=tan3\alpha tan2\alpha tan\alpha\) (Đpcm).
b) \(\dfrac{4tan\alpha\left(1-tan^2\alpha\right)}{\left(1+tan^2\right)^2}=4tan\alpha\left(1-tan^2\alpha\right):\left(\dfrac{1}{cos^2\alpha}\right)^2\)
\(=4tan\alpha\left(1-tan^2\alpha\right)cos^4\alpha\)
\(=4\dfrac{sin\alpha}{cos\alpha}\left(1-\dfrac{sin^2\alpha}{cos^2\alpha}\right)cos^4\alpha\)
\(=4sin\alpha\left(cos^2\alpha-sin^2\alpha\right)cos\alpha\)
\(=4sin\alpha cos\alpha.cos2\alpha\)
\(=2.sin2\alpha.cos2\alpha=sin4\alpha\) (Đpcm).
\(\left(tana+cota\right)^2=16\)
\(\Leftrightarrow tan^2a+cot^2a+2=16\)
\(\Rightarrow tan^2a+cot^2a=14\)
\(tan^2\left(a+3\pi\right)+tan^2\left(a+\frac{3\pi}{2}\right)=tan^2a+cot^2a=14\)
\(\frac{a}{2}\in\left(\frac{\pi}{2};\frac{3\pi}{4}\right)\Rightarrow tan\frac{a}{2}< 0\) ; \(sin\frac{a}{2}>0;cos\frac{a}{2}< 0\)
Đặt \(tan\frac{a}{2}=x< 0\)
\(\frac{2x}{1-x^2}=3\Leftrightarrow3x^2+2x-3=0\Rightarrow tan\frac{a}{2}=x=\frac{-1-\sqrt{10}}{3}\)
\(tan2a=\frac{2tana}{1-tan^2a}=\frac{6}{1-9}=-\frac{3}{4}\)
\(tan4a=\frac{2tan2a}{1-tan^22a}=-\frac{24}{7}\)
\(cos\frac{a}{2}=-\frac{1}{\sqrt{1+tan^2\frac{a}{2}}}=\) số thật kinh khủng
\(sin\frac{a}{2}=\sqrt{1-cos^2\frac{a}{2}}=...\)
\(sin\left(\frac{a}{2}+\frac{\pi}{2}\right)=\sqrt{2}\left(sin\frac{a}{2}+cos\frac{a}{2}\right)=...\)
\(0< a< \frac{\pi}{2}\Rightarrow sina;cosa;tana>0\)
\(tana+\frac{1}{tana}=3\Leftrightarrow tan^2a-3tana+1=0\) \(\Rightarrow\left[{}\begin{matrix}tana=\frac{3-\sqrt{5}}{2}\\tana=\frac{3+\sqrt{5}}{2}\end{matrix}\right.\)
- Với \(tana=\frac{3-\sqrt{5}}{2}\)
\(\Rightarrow cota=\frac{1}{tana}=\frac{3+\sqrt{5}}{2}\)
\(1+tan^2a=\frac{1}{cos^2a}\Rightarrow cosa=\frac{1}{\sqrt{1+tan^2a}}=\frac{2}{\sqrt{18-6\sqrt{5}}}\)
\(sina=\sqrt{1-cos^2a}=\frac{2}{\sqrt{18+6\sqrt{5}}}\)
\(cos\left(\frac{3\pi}{2}-a\right)=cos\left(2\pi-\frac{\pi}{2}-a\right)=-sina=...\)
\(sin\left(2\pi+a\right)=sina=...\)
\(tan\left(\pi-a\right)=-tana=...\)
\(cot\left(\pi+a\right)=cota=...\)
TH2: \(tana=\frac{3+\sqrt{5}}{2}\)
Tương tự như trên
--.-- \(-\pi>-\frac{3}{2}\pi\) mà
Chắc nhầm đề rồi, phải là \(-\pi>a>-\frac{3}{2}\pi\)mới đúng chứ
\(-\pi>a>-\frac{3}{2}\pi\Leftrightarrow\pi>a>\frac{1}{2}\pi\)
\(\cos a=-\frac{4}{5}\Rightarrow\sin a=\frac{3}{5}\)
\(\sin2a=2\sin a.\cos a=2.\frac{3}{5}.\frac{-4}{5}=-\frac{24}{25}\)
\(\cos2a=2\cos^2a-1=\frac{7}{25}\)
\(\sin\left(\frac{5\pi}{2}-a\right)=\sin\left(\frac{\pi}{2}-a\right)=\cos a=-\frac{4}{5}\)
\(\sin\left(a+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}.\frac{3}{5}-\frac{4}{5}.\frac{\sqrt{2}}{2}=-\frac{\sqrt{2}}{10}\)
\(\cos\left(a+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}.\frac{-4}{5}-\frac{\sqrt{2}}{2}.\frac{3}{5}=-\frac{7\sqrt{2}}{10}\)
\(\Rightarrow\tan\left(a+\frac{\pi}{4}\right)=\frac{1}{7}\)
\(\cos^2\left(\frac{a}{2}\right)=\frac{1+\cos a}{2}=\frac{1}{10}\Leftrightarrow\left|\cos\frac{a}{2}\right|=\frac{\sqrt{10}}{10}\)
Mà \(\frac{\pi}{2}>\frac{a}{2}>\frac{\pi}{4}\)
\(\Rightarrow\cos\frac{a}{2}=\frac{\sqrt{10}}{10}\)
\(\pi< a< \frac{3\pi}{2}\Rightarrow\left\{{}\begin{matrix}sina< 0\\cosa< 0\end{matrix}\right.\)
\(\Rightarrow cosa=-\sqrt{1-sin^2a}=-\frac{4}{5}\) \(\Rightarrow tana=\frac{sina}{cosa}=\frac{3}{4}\)
b/ \(sina=\frac{\sqrt{3}}{3}???cosa=\frac{\sqrt{3}}{3}???\)
\(\frac{3\pi}{2}< a< 2\pi\Rightarrow cosa>0\Rightarrow cosa=\sqrt{1-sin^2a}=\frac{4}{5}\)
\(tana=\frac{sina}{cosa}=-\frac{3}{4}\)
\(sin2a=2sina.cosa=-\frac{24}{25}\)
\(cos2a=2cos^2a-1=\frac{7}{25}\)
\(tan\left(a+\frac{\pi}{4}\right)=\frac{tana+tan\frac{\pi}{4}}{1-tana.tan\frac{\pi}{4}}=\frac{-\frac{3}{4}+1}{1+\frac{3}{4}}=...\)
c sai đề
\(sin\left(a+\frac{\pi}{4}\right)=sina.cos\frac{\pi}{4}+cosa.sin\frac{\pi}{4}=...\)
\(M=\frac{\left(-\frac{3}{5}\right)^2-\left(\frac{7}{25}\right)^2}{-\frac{3}{4}}=...\)
a)\(sin\left(\alpha+\dfrac{\pi}{2}\right)=cos\left[\dfrac{\pi}{2}-\left(\alpha+\dfrac{\pi}{2}\right)\right]=cos\left(-\alpha\right)=cos\alpha\).
b) \(cos\left(x+\dfrac{\pi}{2}\right)=sin\left[\dfrac{\pi}{2}-\left(x+\dfrac{\pi}{2}\right)\right]=sin\left(-x\right)=-sinx\).
c) \(tan\left(\alpha+\dfrac{\pi}{2}\right)=\dfrac{sin\left(\alpha+\dfrac{\pi}{2}\right)}{cos\left(\alpha+\dfrac{\pi}{2}\right)}=\dfrac{cos\alpha}{-sin\alpha}=-cot\alpha\).
d) \(cot\left(\alpha+\dfrac{\pi}{2}\right)=\dfrac{cos\left(\alpha+\dfrac{\pi}{2}\right)}{sin\left(\alpha+\dfrac{\pi}{2}\right)}=\dfrac{-sin\alpha}{cos\alpha}=-tan\alpha\).
\(tan\left(\frac{\pi}{3}-a\right)tan\left(\frac{\pi}{3}+a\right)=\frac{sin\left(\frac{\pi}{3}-a\right)sin\left(\frac{\pi}{3}+a\right)}{cos\left(\frac{\pi}{3}-a\right)cos\left(\frac{\pi}{3}+a\right)}\)
\(=\frac{cos2a-cos\frac{2\pi}{3}}{cos2a+cos\frac{2\pi}{3}}=\frac{cos2a+\frac{1}{2}}{cos2a-\frac{1}{2}}=\frac{2cos2a+1}{2cos2a-1}\)
\(\Rightarrow tana.tan\left(\frac{\pi}{3}-a\right)tan\left(\frac{\pi}{3}+a\right)=\frac{sina\left(2cos2a+1\right)}{cosa\left(2cos2a-1\right)}=\frac{2sina.cos2a+sina}{2cos2a.cosa-cosa}\)
\(=\frac{sin3a-sina+sina}{cos3a+cosa-cosa}=\frac{sin3a}{cos3a}=tan3a\)