K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2017

Vì x>0 , y>0 nên   \(x=\sqrt{x}^2\) \(y=\sqrt{y}^2\) Ta có :

 \(x\le y\Leftrightarrow\sqrt{x}^2-\sqrt{y}^2\le0\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)\le0\)

Chia hai vế cho  \(\left(\sqrt{x}+\sqrt{y}\right)\ge0\)được  \(\sqrt{x}-\sqrt{y}\le0\Leftrightarrow\sqrt{x}\le\sqrt{y}\)

25 tháng 4 2020

Với x > 0 ; y > 0 ,ta giả sử \(\sqrt{x+y}< \sqrt{x}+\sqrt{y}\Leftrightarrow\left(\sqrt{x+y}\right)^2< \left(\sqrt{x}+\sqrt{y}\right)^2\)

\(\Leftrightarrow x+y< x+2\sqrt{x.y}+y\Leftrightarrow2\sqrt{xy}>0\)luôn đúng vì x > 0 ; y > 0 

Vậy \(\sqrt{x+y}< \sqrt{x}+\sqrt{y}\left(đpcm\right)\)

3 tháng 1 2016

\(\Leftrightarrow\left(\sqrt{x}+\sqrt{y}\right)^2>x+y\)
\(\Leftrightarrow x+y+2\sqrt{xy}>x+y\)
\(\Leftrightarrow2\sqrt{xy}>0\Leftrightarrow xy>0\)
mà xy>0 vì x>0;y>0-> đpcm

AH
Akai Haruma
Giáo viên
6 tháng 11 2023

Lời giải:

Ta thấy: $\sqrt{(x-2024)^2}\geq 0$ với mọi $x\in\mathbb{R}$

$|x+y-4z|\geq 0$ với mọi $x,y,z\in\mathbb{R}$

$\sqrt{5y^2}\geq 0$ với mọi $y\in\mathbb{R}$

Do đó để tổng của chúng bằng $0$ thì bản thân mỗi số đó phải nhận giá trị $0$

Hay:
$\sqrt{(x-2024)^2}=|x+y-4z|=\sqrt{5y^2}=0$

$\Leftrightarrow x=2024; y=0; z=\frac{x+y}{4}=506$

25 tháng 5 2019

Do x, y>0 nên \(\sqrt{xy}>0\)\(\Rightarrow\) \(2\sqrt{xy}>0\)

\(\Leftrightarrow\)\(x+y+2\sqrt{xy}\ge x+y\)

\(\Leftrightarrow\left(\sqrt{x}+\sqrt{y}\right)^2\ge x+y\)

\(\Leftrightarrow\sqrt{x}+\sqrt{y}\ge\sqrt{x+y}\)(đpcm).

20 tháng 11 2016

Sửa đề :\(\sqrt{x-\sqrt{5}}+\sqrt{y+\sqrt{3}}+\left(x+y+z\right)^2=0\)

\(\sqrt{x-\sqrt{5}};\sqrt{y+\sqrt{3}};\left(x+y+z\right)^2\ge0\)nên vế trái không âm và bằng 0 (theo gt) chỉ khi :

\(\sqrt{x-\sqrt{5}}=\sqrt{y+\sqrt{3}}=\left(x+y+z\right)^2=0\Rightarrow\hept{\begin{cases}x-\sqrt{5}=0\\y+\sqrt{3}=0\\x+y+z=0\left(1\right)\end{cases}}\)

\(\Rightarrow x=\sqrt{5};y=-\sqrt{3}\)và kết hợp với 1,ta có\(z=\sqrt{3}-\sqrt{5}\)

20 tháng 11 2016

Mk nghĩ các bt trong căn với (x+ y+z) phải có 2 nữa , xem lại đề