Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{2018^2+2018^2.2019^2+2019^2}=\sqrt{2018^2+\left(2019-1\right)^2.2019^2+2019^2}=\sqrt{2018^2+2019^4-2.2019.2019^2+2019^2+2019^2}=\sqrt{2019^4+2.2019^2-2.\left(2018+1\right).2019^2+2018^2}=\sqrt{2019^4+2.2019^2-2.2019.2019^2-2.2019^2+2018^2}=\sqrt{2019^4-2.2018.2019^2+2018^2}=\sqrt{\left(2019^2-2018\right)^2}=\left|2019^2-2018\right|=2019^2-2018\)Vì \(2019^2-2018\) là một số nguyên
Vậy \(\sqrt{2018^2+2018^2.2019^2+2019^2}\) là một số nguyên
TQ: \(^{\sqrt{a^2+a^2\left(a+1\right)^2+\left(a+1\right)^2}}=\left(a+1\right)^2-a.\)
Thật vậy ta có: \(a^2+a^2\left(a+1\right)^2+\left(a+1\right)^2=a^4+2a^3+3a^2+2a+1\)
\(\left(\left(a+1\right)^2-a\right)^2=\left(a^2+a+1\right)^2=a^4+2a^3+3a^2+2a+1\)
Căn bậc 2 của 1 là 1,của 2018 bình phương là 2018,2018 bình phương/2019 bình phương là 2018/2019 nên cái căn đó có giá trị là 1+2018+2018/2019 nha.bn lấy 2018/2019+2018/2019 nếu là số tự nhiên thì biểu thức này là STN
\(\sqrt{1+2018^2+\frac{2018^2}{2019^2}}+\frac{2018}{2019}\)
\(=\)\(\sqrt{\left(1+2.2018+2018^2\right)-2.2018+\frac{2018^2}{2019^2}}+\frac{2018}{2019}\)
\(=\)\(\sqrt{2019^2-2.2018+\frac{2018^2}{2019^2}}+\frac{2018}{2019}\)
\(=\)\(\sqrt{\left(2019-\frac{2018}{2019}\right)^2}+\frac{2018}{2019}\)
\(=\)\(\left|2019-\frac{2018}{2019}\right|+\frac{2018}{2019}=2019-\frac{2018}{2019}+\frac{2018}{2019}=2019\)
\(\Rightarrow\)\(\sqrt{1+2018^2+\frac{2018^2}{2019^2}}+\frac{2018}{2019}\) là số tự nhiên ( đpcm )
...
\(\frac{2019}{\sqrt{2018}}+\frac{2018}{\sqrt{2019}}\ge\frac{\left(\sqrt{2019}+\sqrt{2018}\right)^2}{\sqrt{2018}+\sqrt{2019}}=\sqrt{2018}+\sqrt{2019}\)
Dấu "=" ko xảy ra nên \(\frac{2019}{\sqrt{2018}}+\frac{2018}{\sqrt{2019}}>\sqrt{2018}+\sqrt{2019}\)
Bài 1:
Đặt 2018=a
\(B=\sqrt{1+a^2+\dfrac{a^2}{\left(a+1\right)^2}}+\dfrac{a}{a+1}\)
\(=1+a-\dfrac{a}{a+1}+\dfrac{a}{a+1}=1+a=2019\)
\(\left(x+\sqrt{x^2+2018}\right)\left(y+\sqrt{y^2+2018}\right)=2018\)
\(\Rightarrow\left\{{}\begin{matrix}2018\left(x+\sqrt{x^2+2018}\right)=2018\left(\sqrt{y^2+2018}-y\right)\\2018\left(y+\sqrt{y^2+2018}\right)=2018\left(\sqrt{x^2+2018}-x\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+\sqrt{x^2+2018}=\sqrt{y^2+2018}-y\\y+\sqrt{y^2+2018}=\sqrt{x^2+2018}-x\end{matrix}\right.\)
Cộng vế với vế:
\(x+y=-x-y\Rightarrow x=-y\)
\(\Rightarrow x^{2019}=-y^{2019}\Rightarrow x^{2019}+y^{2019}=0\)
Đặt \(2018=a\) thì ta có :
\(\sqrt{2018^2+2018^2.2019^2+2019^2}=\sqrt{a^2+a^2\left(a+1\right)^2+\left(a+1\right)^2}\)
\(=\sqrt{a^4+2a^3+3a^2+2a+1}=\sqrt{\left(a^2+a+1\right)^2}=a^2+a+1\) là 1 số nguyên (ĐPCM)