K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2016

* Cách 1: 

\(\sqrt{1^2+2013^2+\frac{2013^2}{2014^2}}\)

\(=\sqrt{2013^2.\left(1+\frac{1}{2013^2}+\frac{1}{2014^2}\right)}\)

\(=2013.\left(1+\frac{1}{2013}-\frac{1}{2014}\right)\)

\(=2013+1-\frac{2013}{2014}\)

\(=2014-\frac{2013}{2014}\)

* Cách 2:

\(\sqrt{1^2+2013^2+\frac{2013^2}{2014^2}}\)

\(=\sqrt{\left(1+2013\right)^2-2.2013+\frac{2013^2}{2014^2}}\)

\(=\sqrt{2014^2-2.2013+\left(\frac{2013}{2014}\right)^2}\)

\(=\sqrt{\left(2014-\frac{2013}{2014}\right)^2}\)

\(=2014-\frac{2013}{2014}\)

Từ 2 cách trên ta suy ra:

\(\sqrt{1^2+2013^2+\frac{2013^2}{2014^2}}+\frac{2013}{2014}\)

\(=2014-\frac{2013}{2014}+\frac{2013}{2014}\)

\(=2014\)

Theo đề bài trên, ta có thể suy ra công thức tổng quát như sau:

\(\sqrt{1^2+x^2+\frac{x^2}{\left(x+1\right)^2}}+\frac{x}{x+1}\)

(Chúc bạn học tốt và nhớ k cho mình với nhá!)

25 tháng 7 2016

cái này trong sách vũ hữu bình đó bạn