Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=n^2-6n+9\)
\(=n^2-2\cdot n\cdot3+3^2\)
\(=\left(n-3\right)^2\)
=>B là số chính phương
Lời giải:
$P=1-3^2+3^4-3^6+...+3^{96}-3^{98}$
$3^2P=3^2-3^4+3^6-3^8+...+3^{98}-3^{100}$
$\Rightarrow P+3^2P=1-3^{100}$
$\Rightarrow 10P=1-3^{100}$
$\Rightarrow 1-10P=3^{100}=(3^{50})^2$ là số chính phương.
Ta có đpcm.
a) Xét các số có các chữ số tận cùng lần lượt là 0 ; 1 ; 2 ; 3 ; ... ; 9 và lấy các con số cụ thể là 0 ; 1 ; 2 ; .... ; 9
Ta có :
02 = 0
12 = 1
22 = 4
32 = 9
42 = 16
52 = 25
62 = 36
72 = 49
82 = 64
92 = 81
Qua đó ta thấy 1 số chính phương không thể có chữ số tận cùng là 2 ; 3 ; 7 và 8
b) Vì 1262 có chữ số tận cùng là 6
=> 1262 + 1 có chữ số tận cùng là 7 ( không phải số chính phương )
Ta có 10012 có chữ số tận cùng là 1
=> 10012 - 3 có chữ số tận cùng là 8 ( không phải số chính phương )
Ta có 112 và 113 đều có chữ số tận cùng là 1
=> 11 + 112 + 113 có chữ số tận cùng là 3 ( không là số chính phương )
Ta có 1010 có chữ số tận cùng là 0
=> 1010 + 7 có chữ số tận cùng là 7 ( không à số chính phương )
Ta có 5151 có chữ số tận cùng là 1
=> 5151 + 1 có chữ số tận cùng là 2 ( không là số chính phương )
Ta có:
f+1 = 1 + 3^1 + 3^2 + 3^3 + ... + 3^100
3(f+1) = 3 + 3^2 + 3^3+ 3^4 + ... + 3^101
3(f+1) = (1 + 3 + 3^2 + 3^3 + 3^4 + ... + 3^100) + (3^101 - 1)
3(f+1) = (f+1) + (3^101 - 1)
2(f+1) = 3^101 - 1
2f + 2 = 3^101 - 1
2f + 3 = 3^101
2f + 3 = (3^4)^25 . 3
2f + 3 = \(\overline{...1}^{25}\). 3
2f + 3 = \(\overline{..1}\). 3
2f+3 = \(\overline{...3}\)
Mà số chính phương không có tận cùng là chữ số 3 nên 2f+3 không phải là số chính phương
Hơi khó hiểu tí !
3P = 3 + 3^2 + 3^3 + 3^4 +...+ 3^62 + 3^63
=> 3P - P = (3 + 3^2 + 3^3 + 3^4 +...+ 3^62 + 3^63) - (1 + 3 + 3^2 + 3^3 + ... + 3^61 + 3^62)
=> 2P = -1 +3^63
=> P = -1 + 3^63/2
Có : 3^63 = (3^4)15 . 3^3 = 81^15 . 27 = ....1 . 27 = ....7
=> 3^63 -1 = ....6
Từ đó thì bạn cứ suy ra mấy bước nhỏ nữa là xong thôi
13+23+...+103=102.(10+1)2 : 4 =4.52.112 : 4= 52.112=552. Là số chính phương
Quy tắc tính tổng có dạng 1^3+2^3+...+n^3 là n2.(n+1)2 : 4 hoặc (1+2+...+n)2
thank