Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận xét:
\(\frac{1}{31}+\frac{1}{35}+\frac{1}{37}< \frac{1}{30}+\frac{1}{30}+\frac{1}{30}=\frac{1}{10}\)
\(\frac{1}{47}+\frac{1}{53}+\frac{1}{61}< \frac{1}{45}+\frac{1}{45}+\frac{1}{45}=\frac{1}{15}\)
\(\Rightarrow\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}< \frac{1}{3}+\frac{1}{10}+\frac{1}{15}=\frac{1}{2}\)
Vậy \(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{47}+\frac{1}{53}+\frac{1}{61}< \frac{1}{2}\) (Đpcm)
ta có \(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{80}< \frac{1}{80}+\frac{1}{80}+..+\frac{1}{80}\)
ta có vế phải có 40 số , vế trái cũng có 40 số
VT=\(40\cdot\frac{1}{80}=\frac{40}{80}=\frac{1}{2}\)
do đó VT<1/2
Ta có: \(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\)
\(=\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}\right)\)
\(< \frac{1}{2^2}\left(1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)
\(=\frac{1}{2^2}\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
\(=\frac{1}{2^2}\left(2-\frac{1}{7}\right)=\frac{1}{2}-\frac{1}{28}< \frac{1}{2}\)
Vậy \(A< \frac{1}{2}\).
A = 1/ 12 +1/22+1/32+. . . +1/502 < 1+ 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5+ . . . + 1/49.50
<=> A < 1 + 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +. . . + 1/49 - 1/50
<=> A< 1 + 1 - 1/50 = 2 - 1/50
Vậy A < 2
Nhớ k nhé bạn ^^
\(S=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+.......+\frac{1}{100^2}<\frac{1}{2}\)
\(S=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+........+\frac{1}{100^2}\)<\(\frac{1}{0.2}+\frac{1}{2.4}+\frac{1}{4.6}+.......+\frac{1}{98.100}\)
\(S=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}<\frac{50}{100}=\frac{49}{100}<\frac{1}{2}\)
Vậy \(\frac{49}{100}<\frac{1}{2}\)
Ta có 1/22<1/2*3
1/42<1/3*4
. . .
1/1002<1/99*100
=> S<1/2*3+1/3*4+...+1/99*100
=> S<1/2-1/3+1/3-1/4+...+1/99-1/100
=>S<1/2-1/100
=>S<49/100
Mà 49/100<1/2
=>S<1/2
Ta xét A= \(\frac{1}{5^2}+\frac{1}{6^2}+..+\frac{1}{100^2}\)
\(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}...+\frac{1}{100.101}\)
=> \(A>\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\)
=> \(A>\frac{1}{5}-\frac{1}{101}\)
=> \(A>\frac{96}{505}>\frac{96}{576}=\frac{1}{4}\)
Ta có : \(A< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
=> \(A< \frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
=> \(A< \frac{1}{4}-\frac{1}{100}\)
=> \(A< \frac{6}{25}< \frac{6}{24}=\frac{1}{4}\)