![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có :
\(S=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+..............+\dfrac{1}{99.100}\)
\(S=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...........+\dfrac{1}{99}-\dfrac{1}{100}\)
\(S=1-\dfrac{1}{100}=\dfrac{99}{100}\)
\(\frac{1}{1x2}+\frac{1}{2x3}+...+\frac{1}{99x100}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
=\(1-\frac{1}{100}\)
=\(\frac{99}{100}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(S=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}< 1\Rightarrowđpcm\)
\(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\)
\(=\frac{1}{1}-\frac{1}{100}=\frac{99}{100}\)
Mà : \(\frac{99}{100}< 1\)
Vậy : S < 1
![](https://rs.olm.vn/images/avt/0.png?1311)
1/1x2+1/2x3+...+1/49x50
=1-1/2+1/2-1/3+.....+1/49-1/50
=1-1/50(1)
Ta co 1(2)
So sanh (1) voi (2) ta thay 1-1/50<1
=>1/1x2+...+1/49x50<1
(Phuong phap khu)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{49.50}\)
=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}\)
=\(\frac{1}{1}-\frac{1}{50}=\frac{50}{50}-\frac{1}{50}=\frac{49}{50}<1\)
Vậy \(\frac{49}{50}<1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
A=1 - 1/2 + 1/2 - 1/3 +...+ 1/99 - 1/100
A=1 - 1/100
A=100/100 - 1/100
A=99/100
![](https://rs.olm.vn/images/avt/0.png?1311)
)chứng tỏ
a)1/1x2+1/2x3+...+1/9x10 <1
b)1/1x2+1/2x3+...+1/99x100 <1
a)4/1x5+1/5x9+1/9x13+1/13x17+1/17x21<1
Lưu ý:"x" là phép nhân
Toán lớp 6
ái tích mình tíc lại nhà
CÂU a đề bài nó sao sao đó
mà gợi ý cho bạn ....bạn tính tổng đó ra bao nhiêu rồi đem so sánh cho 1
![](https://math-honeycomb.giainhanh.io/img?type=latex&from=%5Cbegin%7Barray%7D%7Bl%7DT+%3D+%5Cfrac%7B1%7D%7B%7B1+%5Ctimes+2%7D%7D+%2B+%5Cfrac%7B1%7D%7B%7B2+%5Ctimes+3%7D%7D+%2B+%5Cfrac%7B1%7D%7B%7B3+%5Ctimes+4%7D%7D+%2B+....+%2B+%5Cfrac%7B1%7D%7B%7B99+%5Ctimes+100%7D%7D%5C%5CT+%3D+%5Cfrac%7B%7B2+-+1%7D%7D%7B%7B1+%5Ctimes+2%7D%7D+%2B+%5Cfrac%7B%7B3+-+2%7D%7D%7B%7B2+%5Ctimes+3%7D%7D+%2B+%5Cfrac%7B%7B4+-+3%7D%7D%7B%7B3+%5Ctimes+4%7D%7D+%2B+....+%2B+%5Cfrac%7B%7B100+-+99%7D%7D%7B%7B99+%5Ctimes+100%7D%7D%5C%5CT+%3D+%5Cleft%28+%7B%5Cfrac%7B1%7D%7B%7B1+%5Ctimes+2%7D%7D+-+%5Cfrac%7B1%7D%7B%7B1+%5Ctimes+2%7D%7D%7D+%5Cright%29+%2B+%5Cleft%28+%7B%5Cfrac%7B3%7D%7B%7B2+%5Ctimes+3%7D%7D+-+%5Cfrac%7B2%7D%7B%7B2+%5Ctimes+3%7D%7D%7D+%5Cright%29+%2B+%5Cleft%28+%7B%5Cfrac%7B4%7D%7B%7B3+%5Ctimes+4%7D%7D+-+%5Cfrac%7B3%7D%7B%7B3+%5Ctimes+4%7D%7D%7D+%5Cright%29+%2B+...+%2B+%5Cleft%28+%7B%5Cfrac%7B%7B100%7D%7D%7B%7B99+%5Ctimes+100%7D%7D+-+%5Cfrac%7B%7B99%7D%7D%7B%7B99+%5Ctimes+100%7D%7D%7D+%5Cright%29%5C%5CT+%3D+%5Cleft%28+%7B1+-+%5Cfrac%7B1%7D%7B2%7D%7D+%5Cright%29+%2B+%5Cleft%28+%7B%5Cfrac%7B1%7D%7B2%7D+-+%5Cfrac%7B1%7D%7B3%7D%7D+%5Cright%29+%2B+%5Cleft%28+%7B%5Cfrac%7B1%7D%7B3%7D+-+%5Cfrac%7B1%7D%7B4%7D%7D+%5Cright%29+%2B+....+%2B+%5Cleft%28+%7B%5Cfrac%7B1%7D%7B%7B99%7D%7D+-+%5Cfrac%7B1%7D%7B%7B100%7D%7D%7D+%5Cright%29%5C%5CT+%3D+1+-+%5Cfrac%7B1%7D%7B2%7D+%2B+%5Cfrac%7B1%7D%7B2%7D+-+%5Cfrac%7B1%7D%7B3%7D+%2B+%5Cfrac%7B1%7D%7B3%7D+-+%5Cfrac%7B1%7D%7B4%7D+%2B+...+%2B+%5Cfrac%7B1%7D%7B%7B99%7D%7D+-+%5Cfrac%7B1%7D%7B%7B100%7D%7D%5C%5CT+%3D+1+-+%5Cfrac%7B1%7D%7B%7B100%7D%7D%5C%5CT+%3D+%5Cfrac%7B%7B99%7D%7D%7B%7B100%7D%7D%5Cend%7Barray%7D.png)
꧁༺ml78871600༻꧂