Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
♡
\(\dfrac{2}{1-\sqrt{2}}-\dfrac{2}{1+\sqrt{2}}\)
\(=\dfrac{2\left(1+\sqrt{2}\right)-2\left(1-\sqrt{2}\right)}{\left(1-\sqrt{2}\right)\left(1+\sqrt{2}\right)}\)
\(=\dfrac{2+2\sqrt{2}-2+2\sqrt{2}}{1-2}=-4\sqrt{2}\)
♡
\(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{5}{\sqrt{5}}\right)\left(\sqrt{5}-\sqrt{2}\right)\)
\(=\left[-\dfrac{\sqrt{2}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}-\sqrt{5}\right]\left(\sqrt{5}-\sqrt{2}\right)\)
\(=-\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right)\)
\(=-3\)
♡
\(\dfrac{2}{7+4\sqrt{3}}+\dfrac{2}{7-4\sqrt{3}}\)
\(=\dfrac{2\left(7-4\sqrt{3}\right)+2\left(7+4\sqrt{3}\right)}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}\)
\(=\dfrac{14-8\sqrt{3}+14+8\sqrt{3}}{49-48}\)
= 28
♡
\(\dfrac{2}{\sqrt{5}+1}-\sqrt{\dfrac{2}{3-\sqrt{5}}}\)
\(=\dfrac{2}{\sqrt{5}+1}-\sqrt{\dfrac{4}{6-2\sqrt{5}}}\)
\(=\dfrac{2}{\sqrt{5}+1}-\dfrac{2}{\sqrt{\left(\sqrt{5}-1\right)^2}}\)
\(=\dfrac{2\left(\sqrt{5}-1\right)-2\left(\sqrt{5}+1\right)}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}\)
\(=\dfrac{2\sqrt{5}-2-2\sqrt{5}-2}{5-1}\)
= - 1
♡
\(\dfrac{4}{1-\sqrt{3}}-\dfrac{\sqrt{15}+\sqrt{3}}{1+\sqrt{5}}\)
\(=\dfrac{4\left(1+\sqrt{3}\right)}{1-3}-\dfrac{\sqrt{3}\left(\sqrt{5}+1\right)}{\left(\sqrt{5}+1\right)}\)
\(=-2-2\sqrt{3}-\sqrt{3}=-2-3\sqrt{3}\)
♡
\(\dfrac{\sqrt{2}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}\)
\(=\dfrac{2}{4+\sqrt{6+2\sqrt{5}}}\) (nhân [căn 2] vào cả tử và mẫu)
\(=\dfrac{2}{4+\sqrt{\left(\sqrt{5}+1\right)^2}}\)
\(=\dfrac{2}{5+\sqrt{5}}=\dfrac{2\left(5-\sqrt{5}\right)}{25-5}=\dfrac{5-\sqrt{5}}{10}\)
\(A=\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{120}+\sqrt{121}}\)
\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{121}-\sqrt{120}\)
\(=\sqrt{121}-\sqrt{1}=11-1=10\)
Lại có: \(\dfrac{1}{\sqrt{k}}=\dfrac{2}{2\sqrt{k}}>\dfrac{2}{\sqrt{k+1}+\sqrt{k}}\left(k>1\right)\)
\(\Leftrightarrow\dfrac{1}{\sqrt{k}}>\dfrac{2\left(\sqrt{k+1}-\sqrt{k}\right)}{k+1-k}=2\left(\sqrt{k+1}-\sqrt{k}\right)\)
Áp dụng đánh giá trên vào B ta có:
\(B>1+2\left(\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{36}-\sqrt{35}\right)\)
\(=1+2\left(\sqrt{36}-\sqrt{2}\right)>1+2\left(6-1\right)=10\)
Suy ra \(A=10< B\Rightarrow A< B\)
1: \(=\dfrac{\sqrt{8+2\sqrt{7}}+\sqrt{8-2\sqrt{7}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{7}+1+\sqrt{7}-1}{\sqrt{2}}=\dfrac{2\sqrt{7}}{\sqrt{2}}=\sqrt{14}\)
3: \(=\sqrt{6+2\sqrt{2\cdot\sqrt{3-\sqrt{3}-1}}}\)
\(=\sqrt{6+2\sqrt{2\cdot\sqrt{2-\sqrt{3}}}}\)
\(=\sqrt{6+2\sqrt{\sqrt{2}\left(\sqrt{3}-1\right)}}\)
\(=\sqrt{6+2\sqrt{\sqrt{6}-\sqrt{2}}}\)
bạn nên tự nghiên cứu rồi giải đi chứ bạn đưa 1 loạt thế thì ai rảnh mà giải, với lại cứ bài gì không biết chưa chịu suy nghĩ đã hỏi rồi thì tiến bộ sao được, đúng không
a)
<=> \(\dfrac{7}{4\cdot\sqrt{3}}và\dfrac{9}{4\cdot\sqrt{5}}\)
<=> \(\dfrac{7\cdot\sqrt{5}}{4\cdot\sqrt{15}}và\dfrac{9\cdot\sqrt{3}}{4\cdot\sqrt{15}}\)
<=>\(\sqrt{245}và\sqrt{243}\)
<=> \(\sqrt{245}>\sqrt{243}\)
=> \(\dfrac{7}{2}\cdot\sqrt{\dfrac{1}{12}}=\dfrac{9}{4}\cdot\sqrt{\dfrac{1}{5}}\)
a)
\(\dfrac{7}{2}\sqrt{\dfrac{1}{12}}=\dfrac{7}{2}\sqrt{\dfrac{12}{12^2}}=\dfrac{7}{2}.\dfrac{\sqrt{12}}{\sqrt{12^2}}=\dfrac{7}{2}.\dfrac{\sqrt{3.4}}{12}=\dfrac{7.2.\sqrt{3}}{2.12}=\dfrac{7\sqrt{3}}{12}=\dfrac{7\sqrt{3}.5}{12.5}=\dfrac{35\sqrt{3}}{60}\)
\(\dfrac{9}{4}\sqrt{\dfrac{1}{5}}=\dfrac{9}{4}\sqrt{\dfrac{5}{5^2}}=\dfrac{9}{4}.\dfrac{\sqrt{5}}{\sqrt{5^2}}=\dfrac{9.\sqrt{5}}{4.5}=\dfrac{9\sqrt{5}}{20}=\dfrac{9\sqrt{5}.3}{20.3}=\dfrac{27\sqrt{5}}{60}\)Ta có \(3675>3645\Leftrightarrow\sqrt{3675}>\sqrt{3645}\Leftrightarrow\sqrt{1225.3}>\sqrt{729.5}\Leftrightarrow35\sqrt{3}>27\sqrt{5}\Leftrightarrow\dfrac{35\sqrt{3}}{60}>\dfrac{27\sqrt{5}}{60}\)
Vậy \(\dfrac{7}{2}\sqrt{\dfrac{1}{12}}>\dfrac{9}{4}\sqrt{\dfrac{1}{5}}\)
b)
\(\sqrt{\dfrac{4}{27}}=\sqrt{\dfrac{4.3}{27.3}}=\dfrac{\sqrt{4.3}}{\sqrt{81}}=\dfrac{2\sqrt{3}}{9}=\dfrac{2\sqrt{3}.26}{9.26}=\dfrac{52\sqrt{3}}{234}\)
\(\sqrt{\dfrac{3}{26}}=\sqrt{\dfrac{3.26}{26^2}}=\dfrac{\sqrt{3.26}}{\sqrt{26^2}}=\dfrac{\sqrt{78}}{26}=\dfrac{9.\sqrt{78}}{26.9}=\dfrac{9\sqrt{78}}{234}\)
Ta có \(8112>6318\Leftrightarrow\sqrt{8112}>\sqrt{6318}\Leftrightarrow\sqrt{2704.3}>\sqrt{81.78}\Leftrightarrow52\sqrt{3}>9\sqrt{78}\Leftrightarrow\dfrac{52\sqrt{3}}{234}>\dfrac{9\sqrt{78}}{234}\)
Vậy \(\sqrt{\dfrac{4}{27}}>\sqrt{\dfrac{3}{26}}\)
TQ:\(S_n=\dfrac{1}{\left(n+n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=\dfrac{\sqrt{n+1}-\sqrt{n}}{n+\left(n+1\right)}\)
Mà theo AM-GM:\(n+\left(n+1\right)\ge2\sqrt{n\left(n+1\right)}\)
\(\Rightarrow S_n\le\dfrac{\sqrt{n+1}-\sqrt{n}}{2\sqrt{n\left(n+1\right)}}=\dfrac{1}{2}\left(\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\right)\)
Áp dụng:\(S< \dfrac{1}{2}\left(1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{48}}-\dfrac{1}{\sqrt{49}}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{7}\right)=\dfrac{6}{14}=\dfrac{3}{7}\)
1
a,\(\sqrt{\dfrac{36}{121}}=\sqrt{\dfrac{6^2}{11^2}}=\dfrac{6}{11}\)
\(\sqrt{\dfrac{9}{16}:\dfrac{25}{36}}=\sqrt{\dfrac{81}{100}}=\sqrt{\dfrac{9^2}{10^2}}=\dfrac{9}{10}\)
Xét :\(\dfrac{\sqrt{n+1}-\sqrt{n}}{n+\left(n+1\right)}=\dfrac{\sqrt{n+1}-\sqrt{n}}{2n+1}=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{4n^2+4n+1}}< \dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{4n^2+4n}}=\dfrac{\sqrt{n+1}-\sqrt{n}}{2\sqrt{n\left(n+1\right)}}=\dfrac{1}{2}\left(\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\right)\)
Do đó :
\(S< \dfrac{1}{2}\left(\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{24}}-\dfrac{1}{\sqrt{25}}\right)=\dfrac{1}{2}\left(1-\dfrac{1}{5}\right)=\dfrac{2}{5}\)
\(A=\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-....-\frac{1}{\sqrt{24}-\sqrt{25}}\)
\(=\frac{\sqrt{1}+\sqrt{2}}{(\sqrt{1}-\sqrt{2})(\sqrt{1}+\sqrt{2})}-\frac{\sqrt{2}+\sqrt{3}}{(\sqrt{2}-\sqrt{3})(\sqrt{2}+\sqrt{3})}+\frac{\sqrt{3}+\sqrt{4}}{(\sqrt{3}-\sqrt{4})(\sqrt{3}+\sqrt{4})}-...-\frac{\sqrt{24}+\sqrt{25}}{(\sqrt{24}-\sqrt{25})(\sqrt{24}+\sqrt{25})}\)
\(=\frac{\sqrt{1}+\sqrt{2}}{-1}-\frac{\sqrt{2}+\sqrt{3}}{-1}+\frac{\sqrt{3}+\sqrt{4}}{-1}-...-\frac{\sqrt{24}+\sqrt{25}}{-1}\)
\(=\frac{(1+\sqrt{2})-(\sqrt{2}+\sqrt{3})+(\sqrt{3}+\sqrt{4})-...-(\sqrt{24}+\sqrt{25})}{-1}\)
\(=\frac{1-\sqrt{25}}{-1}=4\)
\(B=\frac{5}{4+\sqrt{11}}+\frac{11-3\sqrt{11}}{\sqrt{11}-3}-\frac{4}{\sqrt{5}-1}+\sqrt{(\sqrt{5}-2)^2}\)
\(=\frac{5(4-\sqrt{11})}{(4+\sqrt{11})(4-\sqrt{11})}+\frac{\sqrt{11}(\sqrt{11}-3)}{\sqrt{11}-3}-\frac{4(\sqrt{5}+1)}{(\sqrt{5}-1)(\sqrt{5}+1)}+\sqrt{5}-2\)
\(=\frac{5(4-\sqrt{11})}{5}+\sqrt{11}-\frac{4(\sqrt{5}+1)}{4}+\sqrt{5}-2\)
\(=4-\sqrt{11}+\sqrt{11}-(\sqrt{5}+1)+\sqrt{5}-2\)
\(=1\)
ta có :
\(S=\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{4}}+...+\dfrac{1}{\sqrt{25}}\)\(\Leftrightarrow S=\dfrac{2}{2\sqrt{2}}+\dfrac{2}{2\sqrt{3}}+\dfrac{2}{2\sqrt{4}}+...+\dfrac{2}{2\sqrt{25}}\)
\(>\dfrac{2}{\sqrt{2}+\sqrt{3}}+\dfrac{2}{\sqrt{3}+\sqrt{4}}+\dfrac{2}{\sqrt{4}+\sqrt{5}}+...+\dfrac{2}{\sqrt{25}+\sqrt{26}}\)
\(\Leftrightarrow S>2.\left(\dfrac{\sqrt{2}-\sqrt{3}}{2-3}+\dfrac{\sqrt{3}-\sqrt{4}}{3-4}+\dfrac{\sqrt{4}+\sqrt{5}}{4-5}+...+\dfrac{\sqrt{25}-\sqrt{26}}{25-26}\right)\)\(\Leftrightarrow S>2\left(\dfrac{\sqrt{2}-\sqrt{3}+\sqrt{3}-\sqrt{4}+\sqrt{4}-\sqrt{5}+...+\sqrt{25}-\sqrt{26}}{-1}\right)\)
\(\Leftrightarrow S>2\left(\dfrac{\sqrt{2}-\sqrt{26}}{-1}\right)\)
\(\Leftrightarrow S>2.\left(\sqrt{26}-\sqrt{2}\right)\)
\(\Leftrightarrow S>7,4\)
\(\Leftrightarrow S>7\)
chúc bn hc tốt
\(Áp\:dụng\:công\:thức:\:2\left(\sqrt{k+1}-\sqrt{k}\right)< \dfrac{1}{\sqrt{k}}\:ta\:có:\\• 2\left(\sqrt{2+1}-\sqrt{2}\right)< \dfrac{1}{\sqrt{2}}\\ •2\left(\sqrt{3+1}-\sqrt{3}\right)< \dfrac{1}{\sqrt{3}}\\ .......\\ •2\left(\sqrt{25+1}-\sqrt{25}\right)< \dfrac{1}{\sqrt{25}}\)
\(cộng\: vế\: theo\: vế,\: ta\: được:\\ 2\left(\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+\sqrt{5}-\sqrt{4}+...+\sqrt{26}-\sqrt{25}\right)< A\\ \Leftrightarrow2.\left(\sqrt{26}-\sqrt{2}\right)< A\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \left(1\right)\)
ta có:
\(\left\{{}\begin{matrix}\sqrt{26}>\sqrt{25}\\\sqrt{2}< 1,5\end{matrix}\right.\Rightarrow\sqrt{26}-\sqrt{2}>\sqrt{25}-1,5=5-1,5=3,5\\ \Rightarrow2\left(\sqrt{26}-\sqrt{2}\right)>2.3,5=7\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \left(2\right)\)
từ (1) và (2) => A>7 (đpcm)