Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=x^{200}+x^{100}+1\)
\(=x^{200}-x^2+x^{100}-x^4+x^4+x^2+1\)
\(=x^2\left(x^{198}-1\right)+x^4\left(x^{96}-1\right)+\left(x^4+x^2+1\right)\)
\(=x^2\left(x^{^6}-1\right).A+x^4\left(x^6-1\right).B+x^4+x^2+1\)
\(x^6-1=\left(x^3-1\right)\left(x^3+1\right)=\left(x-1\right)\left(x^2+x+1\right)\left(x+1\right)\left(x^2-x+1\right)=\left(x-1\right)\left(x+1\right)\left(x^4+x^2+1\right)\)
Vậy \(A⋮\left(x^4+x^2+1\right)\)


a: Thiếu vế phải rồi bạn
b: \(\Leftrightarrow\dfrac{x+y}{xy}>=\dfrac{4}{x+y}\)
\(\Leftrightarrow\left(x+y\right)^2>=4xy\)
\(\Leftrightarrow\left(x-y\right)^2>=0\)(luôn đúng)

Câu a:
Cm: A = \(x^2+x+1>0\forall x\)
A = \(x^2+2.x\).\(\frac12+\left(\frac12\right)^2+\frac34\)
A = [\(x^2+2x\).\(\frac12\) + \(\left(\frac12\right)^2\)] + \(\frac34\)
A = [\(x+\frac12]^2\) + \(\frac34\)
[\(x+\frac12\)]\(^2\) ≥ 0 ∀ \(x\)
A = [\(x+\frac12\)]\(^2\) + \(\frac34\) ≥ \(\frac34\forall x\)
A > 0 \(\forall x\) (đpcm)
b; B = \(x^{2}\) - \(x + 1\)
B = \(x^{2} - 2. x .\)\(\frac{1}{2} + \left(\left(\right. \frac{1}{2} \left.\right)\right)^{2}\) + \(\frac{3}{4}\)
B = [\(x^{2} - 2. x\).\(\frac{1}{2} + \left(\left(\right. \frac{1}{2} \left.\right)\right)^{2}\)] + \(\frac{3}{4}\)
B = [\(x - \frac{1}{2}\)]\(^{2}\) + \(\frac{3}{4}\)
Vì [\(x - \frac{1}{2}\)]\(^{2}\) ≥ 0 ∀ \(x\)
B = [\(x - \frac{1}{2}\)] + \(\frac{3}{4}\) ≥ \(\frac{3}{4}\)
B > 0 \(\forall x\) (đpcm)

làm tắt ko hiểu thì hỏi
a) \(=x^2+2.xy.\frac{1}{2}+\frac{1}{4}y^2-\frac{1}{4}y^2+y^2+1\)
\(=\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2+1>0\)
b) \(=\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6x+9\right)+1\)
\(=\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1>0\)

\(\dfrac{x^4-x^3-x+1}{x^4+x^3+3x^2+2x+2}\)
\(=\dfrac{\left(x-1\right)^2\left(x^2+x+1\right)}{\left(x^2+2\right)\left(x^2+x+1\right)}\)
\(=\dfrac{\left(x-1\right)^2}{x^2+2}\ge0\forall x\) (đpcm)
Dấu "=" xảy ra khi x = 1
Bn kia giải bài 1 r nên mk giải bài 2 nha!
Sửa lại:\(\dfrac{x^7+x^2+1}{x^8+x+1}\)
\(\dfrac{x^7+x^2+1}{x^8+x+1}=\dfrac{x^7-x+x^2+x+1}{x^8-x^2+x^2+x+1}\)
\(=\dfrac{x\left(x^6-1\right)+x^2+x+1}{x^2\left(x^6-1\right)+x^2+x+1}\)
\(=\dfrac{x\left(x^3-1\right)\left(x^3+1\right)+x^2+x+1}{x^2\left(x^3-1\right)\left(x^3+1\right)+x^2+x+1}\)
\(=\dfrac{x\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+x^2+x+1}{x^2\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+x^2+x+1}\)
\(=\dfrac{\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)}{\left(x^2+x+1\right)(x^6-x^5+x^3-x^2+1)}\)
Cả tử và mẫu đều có nhân tử:\(x^2+x+1>1\Rightarrowđpcm\)
x^200+x^100+1=x^100*(x^2+1)+1
x^4+x^2+1=x^2*(x^2+1)+1
mà x^100chia hết cho x^2
x^2+1chia hết cho x^2+1
1 chia hết cho1
suy ra x^100*(x^2+1)+1 chia hết cho x^2*(x^2+1)+1 hay x^200+x^100+1 chia hết cho x^4+x^2+1